版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省忻州市忻府区忻州一中数学高一上期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则A. B.C. D.2.下列函数中,既是偶函数,在上是增函数的是()A. B.C. D.3.已知函数,则是A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.若用二分法逐次计算函数在区间内的一个零点附近的函数值,所得数据如下:0.510.750.6250.562510.4620.155则方程的一个近似根(精度为0.1)为()A.0.56 B.0.57C.0.65 D.0.85.“”是“为锐角”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既非充分又非必要条件6.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系7.袋中装有5个小球,颜色分别是红色、黄色、白色、黑色和紫色.现从袋中随机抽取3个小球,设每个小球被抽到的机会均相等,则抽到白球或黑球的概率为A. B.C. D.8.在长方体中,,,则该长方体的外接球的表面积为A. B.C. D.9.已知集合,集合,则()A. B.C. D.10.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数的定义域为[-2,2],则函数的定义域为______12.已知集合,,则集合中子集个数是____13.已知直线经过点,且与直线平行,则直线的方程为__________14.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.15.若圆心角为的扇形的弧长为,则该扇形面积为__________.16.已知,求________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是偶函数(1)求实数的值;(2)若函数的最小值为,求实数的值;(3)当为何值时,讨论关于的方程的根的个数18.如图,在四棱锥中,平面,底面是菱形,,,,为与的交点,为棱上一点.(Ⅰ)证明:平面;(Ⅱ)若平面,求三棱锥的体积.19.已知函数是定义在上奇函数,且.(1)求,的值;(2)判断在上的单调性,并用定义证明.20.已知定义在R上的函数满足:①对任意实数x,y,都有;②对任意(1)求;(2)判断并证明函数的奇偶性;(3)若,直接写出的所有零点(不需要证明)21.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,因为函数是增函数,且,所以,故选B考点:对数的运算及对数函数的性质2、C【解析】根据函数奇偶性的定义及幂函数、对数函数、指数函数的性质,对各选项逐一分析即可求解.【详解】解:对A:,定义域为R,因为,所以函数为偶函数,而根据幂函数的性质有在上单调递增,所以在上单调递减,故选项A错误;对B:,定义域为,因为,所以函数为奇函数,故选项B错误;对C:定义域为,因为,所以函数为偶函数,又时,根据对数函数的性质有在上单调递减,所以在上单调递增,故选项C正确;对D:,定义域为R,因为,所以函数为奇函数,故选项D错误.故选:C.3、B【解析】先求得,再根据余弦函数的周期性、奇偶性,判断各个选项是否正确,从而得出结论【详解】∵,∴=,∵,且T=,∴是最小正周期为偶函数,故选B.【点睛】本题主要考查诱导公式,余弦函数的奇偶性、周期性,属于基础题4、B【解析】利用零点存在性定理和精确度要求即可得解.【详解】由表格知在区间两端点处的函数值符号相反,且区间长度不超过0.1,符合精度要求,因此,近似值可取此区间上任一数故选:B5、B【解析】根据充分条件与必要条件的定义判断即可.【详解】解:因为为锐角,所以,所以,所以“”是“为锐角”的必要条件;反之,当时,,但是不是锐角,所以“”是“为锐角”的非充分条件.故“”是“为锐角”必要不充分条件.故选:B.【点睛】本题主要考查充分条件与必要条件,与角的余弦在各象限的正负,属于基础题.6、C【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.7、D【解析】分析:先求对立事件的概率:黑白都没有的概率,再用1减得结果.详解:从袋中球随机摸个,有,黑白都没有只有种,则抽到白或黑概率为选点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.8、B【解析】由题求出长方体的体对角线,则外接球的半径为体对角线的一半,进而求得答案【详解】由题意可得,长方体体对角线为,则该长方体的外接球的半径为,因此,该长方体的外接球的表面积为.【点睛】本题考查外接球的表面积,属于一般题9、C【解析】解不等式求出集合A中的x的范围,然后求出A的补集,再与集合B求交集即可.【详解】集合,则集合,,故选:C.【点睛】本题考查了集合的基本运算,属于基础题.10、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】∵函数的定义域为[-2,2]∴,∴∴函数的定义域为12、4【解析】根据题意,分析可得集合的元素为圆上所有的点,的元素为直线上所有的点,则中元素为直线与圆的交点,由直线与圆的位置关系分析可得直线与圆的交点个数,即可得答案【详解】由题意知中的元素为圆与直线交点,因为圆心(1,-2)到直线2x+y-5=0的距离∴直线与圆相交∴集合有两个元素,故集合中子集个数为4故答案为4【点睛】本题考查直线与圆的位置关系,涉及集合交集的意义,解答本题的关键是判定直线与圆的位置关系,以及运用集合的结论:一个含有个元素的集合的子集的个数为个.13、【解析】设与直线平行的直线,将点代入得.即所求方程为14、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:15、【解析】根据扇形面积公式计算即可.【详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:16、【解析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【详解】∵,∴,,,∴,∴故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)当时,方程有一个根;当时,方程没有根;当或或时,方程有两个根;当时,方程有三个根;当时,方程有四个根【解析】(1)利用偶函数满足,求出的值;(2)对函数变形后利用二次函数的最值求的值;(3)定义法得到的单调性,方程通过换元后得到的根的情况,通过分类讨论最终求出结果.【小问1详解】由题意得:,即,所以,其中,∴,解得:【小问2详解】,∴,故函数的最小值为,令,故的最小值为,等价于,解得:或,无解综上:【小问3详解】由,令,,有由,有,,可得,可知函数为增函数,故当时,函数单调递增,由函数为偶函数,可知函数的增区间为,减区间为,令,有,方程(记为方程①)可化为,整理为:(记为方程②),,当时,有,此时方程②无解,可得方程①无解;当时,时,方程②的解为,可得方程①仅有一个解为;时,方程②的解为,可得方程①有两个解;当时,可得或,1°当方程②有零根时,,此时方程②还有一根为,可得此时方程①有三个解;2°当方程②有两负根时,可得,不可能;3°当方程②有两正根时,可得:,又由,可得,此时方程①有四个根;4°当方程②有一正根一负根时,,可得:或,又由,可得或,此时方程①有两个根,由上知:当时,方程①有一个根;当时,方程①没有根;当或或时,方程①有两个根;当时,方程①有三个根;当时,方程①有四个根【点睛】对于复合函数根的个数问题,要用换元法来求解,通常方法会用到根的判别式,导函数,基本不等式等.18、(Ⅰ)答案见详解;(Ⅱ).【解析】(Ⅰ)平面,,四边形是菱形,,平面;(Ⅱ)连接,由平面,推出,从而是的中点,那么三棱锥的体积则可通过中点进行转化,变为三棱锥体积的一半.【详解】(Ⅰ)平面,平面,,四边形是菱形,,,平面;(Ⅱ)如图,连接,平面,平面平面,,是的中点,是的中点,菱形中,,,是等边三角形,,,.【点睛】本题主要考查线面垂直的证明以及棱锥体积的计算,属于中档题.一般计算规则几何体的体积时,常用的方法有顶点转换,中点转换等,需要学生有一定的空间思维能力和计算能力.19、(1),;(2)证明见解析【解析】(1)根据已知条件,为奇函数,利用可以求解出参数b,然后带入到即可求解出参数a,得到函数解析式后再去验证函数是否满足在上的奇函数即可;(2)由第(1)问求解出的函数解析式,任取,,做差,通过因式分解判断差值的符号,即可证得结论.【小问1详解】由已知条件,函数是定义在上的奇函数,所以,,所以,所以,检验,为奇函数,满足题意条件;所以,.小问2详解】在上单调递增,证明如下:任取,,;其中,,所以,故在上单调递增.20、(1)(2)为偶函数,证明见解析(3)【解析】(1)令,化简可求出,(2)令,则,化简后结合函数奇偶性的定义判断即可,(3)利用赋值求解即可【小问1详解】令,则,,得或,因对任意,所以【小问2详解】为偶函数证明:令,则,得,所以为偶函数【小问3详解】令,则,因为,所以,当时,,当时,,当时,,当时,,……,所以即当时,,所以函数的零点为21、(1);(2)在上为单调增函数;(3)【解析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合伙人协议合同书
- 二零二四年度智能硬件设备研发与生产合同
- 二零二四年度商务代理合同代理产品与代理区域
- 换热器采购合作协议
- 广告发布合同案例
- 节能减排合作方案
- 英文房屋抵押贷款合同
- 仓储服务合同升级策略分析
- 招标代理投标文件完全攻略宝典
- 海鲜水产选购协议
- 第三单元小数除法(单元测试)-2024-2025学年五年级数学上册人教版
- 皮鞋(2023年四川成都中考语文试卷记叙文阅读题及答案)
- 2024年高等学校英语应用能力考试B级真题附答案
- 2024年公安机关人民警察基本级执法资格考试试题
- 员工培训记录表
- 统编版2024年新教材七年级上册道德与法治7.2《共建美好集体》教案
- 16 朱德的扁担 公开课一等奖创新教学设计(表格式)
- 五年级上册语文说课稿《25.古人谈读书》人教(部编版)
- (初级)管工职业鉴定考试题库(含答案)
- GA/T 2133.2-2024便携式微型计算机移动警务终端第2部分:安全监控组件技术规范
- 《陆上风力发电建设工程质量监督检查大纲》
评论
0/150
提交评论