北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第1页
北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第2页
北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第3页
北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第4页
北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市昌平区昌平二中2023-2024学年高一数学第一学期期末质量跟踪监视模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的定义域是,那么函数在区间上()A.有最小值无最大值 B.有最大值无最小值C.既有最小值也有最大值 D.没有最小值也没有最大值2.已知函数的部分函数值如下表所示:x10.50.750.6250.56250.6321-0.10650.27760.0897-0.007那么函数的一个零点的近似值(精确度为0.01)为()A.0.55 B.0.57C.0.65 D.0.73.已知幂函数是偶函数,则函数恒过定点A. B.C. D.4.使不等式成立的充分不必要条件是()A. B.C. D.5.已知均为上连续不断的曲线,根据下表能判断方程有实数解的区间是()x01233.0115.4325.9807.6513.4514.8905.2416.892A. B.C. D.6.设:,:,则是的()A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件7.若,则tanθ等于()A.1 B.-1C.3 D.-38.设,,,则,,的大小关系为()A. B.C. D.9.已知集合A={1,2,3},B={x∈N|x≤2},则A∪B=()A.{2,3} B.{0,1,2,3}C.{1,2} D.{1,2,3}10.若,,则的值为()A. B.-C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的图像与直线y=a在(0,)上有三个交点,其横坐标分别为,,,则的取值范围为_______.12.已知函数f(x)=cos(ωx+φ)(ω>0,|φ|≤),x=-为f(x)的零点,x=为y=f(x)图象的对称轴,且f(x)在(,)上单调,则ω的最大值为______13.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”14.计算=_______________15.已知幂函数在上单调递减,则___________.16.已知幂函数的图象过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在四棱锥P-ABCD中,底面是边长为a的正方形,侧棱PD=a,PA=PC=a,(1)求证:PD⊥平面ABCD;(2)求证:平面PAC⊥平面PBD;(3)求二面角P-AC-D的正切值18.如图,在四棱锥中,底面ABCD为平行四边形,,平面底面ABCD,M是棱PC上的点.(1)证明:底面;(2)若三棱锥的体积是四棱锥体积的,设,试确定的值.19.已知向量,,,求:(1),;(2)20.若函数f(x)满足f(logax)=·(x-)(其中a>0且a≠1).(1)求函数f(x)解析式,并判断其奇偶性和单调性;(2)当x∈(-∞,2)时,f(x)-4的值恒为负数,求a的取值范围21.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】依题意不等式的解集为,即可得到且,再根据二次函数的性质计算在区间上的单调性,即可得到函数的最值;【详解】解:因为函数的定义域是,即不等式的解集为,所以且,即,所以,函数开口向上,对称轴为,在上单调递减,在上单调递增,所以,没有最大值;故选:A2、B【解析】根据给定条件直接判断函数的单调性,再结合零点存在性定理判断作答.【详解】函数在R上单调递增,由数表知:,由零点存在性定义知,函数的零点在区间内,所以函数的一个零点的近似值为.故选:B3、D【解析】根据幂函数和偶函数的定义可得的值,进而可求得过的定点.【详解】因为是幂函数,所以得或,又偶函数,所以,函数恒过定点.故选:.【点睛】本题主要考查的是幂函数和偶函数的定义,以及对数函数性质的应用,是基础题.4、A【解析】解一元二次不等式,再根据充分条件、必要条件的定义结合集合间的关系直接判断作答.【详解】解不等式得:,对于A,因,即是成立的充分不必要条件,A正确;对于B,是成立的充要条件,B不正确;对于C,因,且,则是成立的不充分不必要条件,C不正确;对于D,因,则是成立必要不充分条件,D不正确.故选:A5、C【解析】根据函数零点的存在性定理可以求解.【详解】由表可知,,,令,则均为上连续不断的曲线,所以在上连续不断的曲线,所以,,;所以函数有零点的区间为,即方程有实数解的区间是.故选:C.6、B【解析】解出不等式,根据集合的包含关系,可得到答案.【详解】解:因为:,所以:或,因为:,所以是的充分不必要条件.故选:B【点睛】本题考查了充分不必要条件的判断,两个命题均是范围形式,解决问题常见的方法是判断出集合之间包含关系.7、D【解析】由诱导公式及同角三角函数基本关系化简原式即可求解.【详解】由已知即故选:D【点睛】本题考查诱导公式及同角三角函数基本关系,属于简单题.8、D【解析】根据指数函数和对数函数的单调性,再结合0,1两个中间量即可求得答案.【详解】因为,,,所以.故选:D.9、B【解析】先求出集合B,再求A∪B.【详解】因为,所以.故选:B10、D【解析】直接利用同角三角函数关系式的应用求出结果.【详解】已知,,所以,即,所以,所以,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由x∈(0,)求出,然后,画出正弦函数的大致图像,利用图像求解即可【详解】由题意因为x∈(0,),则,可画出函数大致的图则由图可知当时,方程有三个根,由解得,解得,且点与点关于直线对称,所以,点与点关于直线对称,故由图得,令,当为x∈(0,)时,解得或,所以,,,解得,,则,即.故答案为:【点睛】关键点睛:解题关键在于利用x∈(0,),则画出图像,并利用对称性求出答案12、【解析】先根据是的零点,是图像的对称轴可转化为周期的关系,从而求得的取值范围,又根据所求值为最大值,所以从大到小对赋值验证找到适合的最大值即可【详解】由题意可得,即,解得,又因为在上单调,所以,即,因为要求的最大值,令,因为是的对称轴,所以,又,解得,所以此时,在上单调递减,即在上单调递减,在上单调递增,故在不单调,同理,令,,在上单调递减,因为,所以在单调递减,满足题意,所以的最大值为5.【点睛】本题综合考查三角函数图像性质的运用,在这里需注意:两对称轴之间的距离为半个周期;相邻对称轴心之间的距离为半个周期;相邻对称轴和对称中心之间的距离为个周期13、(1)是;(2)①;②见解析【解析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【点睛】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.14、【解析】原式考点:三角函数化简与求值15、【解析】由系数为1解出的值,再由单调性确定结论【详解】由题意,解得或,若,则函数为,在上递增,不合题意若,则函数为,满足题意故答案为:16、【解析】由幂函数的解析式的形式可求出和的值,再将点代入可求的值,即可求解.【详解】因为是幂函数,所以,,又的图象过点,所以,解得,所以.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)见解析(3)【解析】(1)证明:∵PD=a,DC=a,PC=a,∴PC2=PD2+DC2,∴PD⊥DC.同理,PD⊥AD,又AD∩DC=D,∴PD⊥平面ABCD(2)证明:由(1)知PD⊥平面ABCD,∴PD⊥AC,又四边形ABCD是正方形,∴AC⊥BD,又BD∩PD=D,∴AC⊥平面PDB.又AC⊂平面PAC,∴平面PAC⊥平面PBD(3)设AC∩BD=O,连接PO.由PA=PC,知PO⊥AC.又DO⊥AC,故∠POD为二面角P-AC-D的平面角.易知OD=.在Rt△PDO中,tan∠POD=.考点:平面与平面垂直的判定.18、(1)详见解析;(2).【解析】(1)利用面面垂直的性质定理,可得平面,然后利用线面垂直的判定定理即证;(2)由题可得,进而可得,即得.【小问1详解】∵,平面底面ABCD,∴,平面底面ABCD=AD,底面ABCD,∴平面,平面,∴PD,又,∴,,∴底面;【小问2详解】设,M到底面ABCD的距离为,∵三棱锥的体积是四棱锥体积的,∴,又,,∴,故,又,所以.19、(1),(2)【解析】(1)利用向量的坐标运算即得;(2)利用向量模长的坐标公式即求.【小问1详解】∵向量,,,所以,.【小问2详解】∵,,∴,所以20、(1)见解析.(2)[2-,1)∪(1,2+]【解析】试题分析:(1)利用换元法求函数解析式,注意换元时元的范围,再根据奇偶性定义判断函数奇偶性,最后根据复合函数单调性性质判断函数单调性(2)不等式恒成立问题一般转化为对应函数最值问题:即f(x)最大值小于4,根据函数单调性确定函数最大值,自在解不等式可得a的取值范围试题解析:(1)令logax=t(t∈R),则x=at,∴f(t)=(at-a-t)∴f(x)=(ax-a-x)(x∈R)∵f(-x)=(a-x-ax)=-(ax-a-x)=-f(x),∴f(x)为奇函数当a>1时,y=ax为增函数,y=-a-x为增函数,且>0,∴f(x)为增函数当0<a<1时,y=ax为减函数,y=-a-x为减函数,且<0,∴f(x)为增函数.∴f(x)在R上为增函数(2)∵f(x)是R上的增函数,∴y=f(x)-4也是R上的增函数由x<2,得f(x)<f(2),要使f(x)-4在(-∞,2)上恒为负数,只需f(2)-4≤0,即(a2-a-2)≤4.∴()≤4,∴a2+1≤4a,∴a2-4a+1≤0,∴2-≤a≤2+.又a≠1,∴a的取值范围为[2-,1)∪(1,2+]点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.21、(1)见解析;(2)见解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论