版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市西城区第十三中学2024届高一数学第一学期期末质量跟踪监视试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若方程有三个不同的实数根,则实数的取值范围是A. B.C. D.2.函数lgx=3,则x=()A1000 B.100C.310 D.303.若a>b>1,0<c<1,则下列式子中不正确的是()A. B.C. D.4.根据表格中的数据,可以判定函数的一个零点所在的区间为.A. B.C. D.5.历史上数学计算方面的三大发明是阿拉伯数、十进制和对数,其中对数的发明,大大缩短了计算时间,为人类研究科学和了解自然起了重大作用,对数运算对估算“天文数字”具有独特优势.已知,,则的估算值为()A. B.C. D.6.要得到函数的图象,只需要将函数的图象A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位7.已知某几何体的三视图如图所示,则该几何体的体积为A. B.C. D.8.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位9.已知函数fx=2x2+bx+c(b,c为实数),f-10=f12.若方程A.4 B.2C.1 D.110.已知集合,,则集合()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,则函数的最大值是__________12.一个几何体的三视图如图所示,其中正视图与侧视图都是斜边长为4的直角三角形,俯视图是半径为2的四分之一圆周和两条半径,则这个几何体的体积为______13.函数的定义域为_________.14.已知集合,,则集合中元素的个数为__________15.已知幂函数的图象过点,则________16.平面向量,,(R),且与的夹角等于与的夹角,则___.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=2x,g(x)=(4﹣lnx)•lnx+b(b∈R)(1)若f(x)>0,求实数x的取值范围;(2)若存在x1,x2∈[1,+∞),使得f(x1)=g(x2),求实数b的取值范围;18.如图,平行四边形中,,分别是,的中点,为与的交点,若,,试以,为基底表示、、19.已知集合,.(1)求,;(2)已知集合,若,求实数的取值范围.20.已知函数,.(1)若函数在为增函数,求实数的取值范围;(2)若函数为偶函数,且对于任意,,都有成立,求实数的取值范围.21.已知函数,.(1)解方程;(2)判断在上的单调性,并用定义加以证明;(3)若不等式对恒成立,求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由得画出函数的图象如图所示,且当时,函数的图象以为渐近线结合图象可得当的图象与直线有三个不同的交点,故若方程有三个不同的实数根,实数的取值范围是.选A点睛:已知函数零点的个数(方程根的个数)求参数值(取值范围)的方法(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决,如在本题中,方程根的个数,即为直线与图象的公共点的个数;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解,对于一些比较复杂的函数的零点问题常用此方法求解.2、A【解析】由lgx=3,可得直接计算出结果.【详解】由lgx=3,有:则,故选:A【点睛】本题考查对数的定义,属于基础题.3、D【解析】利用对数函数、指数函数与幂函数的单调性即可判断出正误.【详解】解:,,,A正确;是减函数,,B正确;为增函数,,C正确.是减函数,,D错误.故选.【点睛】本题考查了对数函数、指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.4、D【解析】函数,满足.由零点存在定理可知函数的一个零点所在的区间为.故选D.点睛:函数的零点问题,常根据零点存在性定理来判断,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,
这个c也就是方程f(x)=0的根.由此可判断根所在区间.5、C【解析】令,化为指数式即可得出.【详解】令,则,∴,即的估算值为.故选:C.6、B【解析】因为函数,要得到函数的图象,只需要将函数的图象向右平移个单位本题选择B选项.点睛:三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同7、D【解析】解:该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为.本题选择D选项.8、B【解析】将目标函数变为,由此求得如何将变为目标函数.【详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【点睛】本小题主要考查三角函数图像变换中的平移变换,属于基础题.9、B【解析】由f-10=f12求得b=-4,再由方程fx=0有两个正实数根x1【详解】因为函数fx=2x2+bx+c(b所以200-10b+c=288+12b+c,解得b=-4,所以fx因为方程fx=0有两个正实数根x1所以Δ=16-8c≥0解得0<c≤2,所以1x当c=2时,等号成立,所以其最小值是2,故选:B10、B【解析】解不等式求得集合、,由此求得.【详解】,,所以.故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数变形为,再由基本不等式求得,从而有,即可得到答案.【详解】∵函数∴由基本不等式得,当且仅当,即时取等号.∴函数的最大值是故答案为.【点睛】本题主要考查线性规划的应用以及基本不等式的应用,.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用或时等号能否同时成立).12、【解析】由题得几何体为圆锥的,根据三视图的数据计算体积即可【详解】由三视图可知几何体为圆锥的,圆锥的底面半径为2,母线长为4,∴圆锥的高为∴V=×π×22×=故答案为【点睛】本题主要考查了圆锥的三视图和体积计算,属于基础题13、【解析】根据根式、对数的性质有求解集,即为函数的定义域.【详解】由函数解析式知:,解得,故答案为:.14、2【解析】依题意,故,即元素个数为个.15、3【解析】先求得幂函数的解析式,再去求函数值即可.【详解】设幂函数,则,则,则,则故答案为:316、2【解析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(0,+∞)(2)[,+∞)【解析】(1)解指数不等式2x>2﹣x可得x>﹣x,运算即可得解;(2)由二次函数求最值可得函数g(x)的值域为,函数f(x)的值域为A=[,+∞),由题意可得A∩B≠,列不等式b+4运算即可得解.【详解】解:(1)因为f(x)>0⇔2x0,∴2x>2﹣x,∴x>﹣x,即x>0∴实数x的取值范围为(0,+∞)(2)设函数f(x),g(x)在区间[1,+∞)的值域分别为A,B∵f(x)=2x在[1,+∞)上单调递增,又∴A=[,+∞)∵g(x)=(4﹣lnx)•lnx+b=﹣(lnx﹣2)2+b+4∵x∈[1,+∞),∴lnx∈[0,+∞),∴g(x)≤b+4,即依题意可得A∩B≠,∴b+4,即b∴实数b的取值范围为[,+∞)【点睛】本题考查了指数不等式的解法,主要考查了二次函数最值的求法,重点考查了集合的运算,属中档题.18、【解析】分析:直接利用共线向量的性质、向量加法与减法的三角形法则求解即可.详解:由题意,如图,,连接,则是的重心,连接交于点,则是的中点,∴点在上,∴,故答案为;;∴点睛:向量的运算有两种方法,一是几何运算往往结合平面几何知识和三角函数知识解答,运算法则是:(1)平行四边形法则(平行四边形的对角线分别是两向量的和与差);(2)三角形法则(两箭头间向量是差,箭头与箭尾间向量是和);二是坐标运算:建立坐标系转化为解析几何问题解答(求最值与范围问题,往往利用坐标运算比较简单)19、(1),;(2).【解析】(1)求出集合,再由集合的交、并、补运算即可求解.(2)根据集合的包含关系列出不等式:且,解不等式即可求解.【详解】(1)∵,∴,∴..∴∴,∴;(2)由(1)知,由,可得且,解得.综上所述:的取值范围是20、(1)(2)【解析】(1)利用定义法证明函数的单调性,依题意可得,即,参变分离可得对恒成立,再根据指数函数的性质计算可得;(2)由函数为偶函数,得到,即可求出的值,从而得到的解析式,再利用基本不等式得到,依题意,可得对任意恒成立,即对任意恒成立,①由有意义,求得;②由,得,即可得到对任意恒成立,从而求出,从而求出参数的取值范围;【小问1详解】解:设,且,则∵函数在上为增函数,∴恒成立又∵,∴,∴恒成立,即对恒成立当时,的取值范围为,故,即实数取值范围为.【小问2详解】解:∵为偶函数,∴对任意都成立,又∵上式对任意都成立,∴,∴,∴,当且仅当时等号成立,∴的最小值为0,∴由题意,可得对任意恒成立,∴对任意恒成立①由有意义,得在恒成立,得在恒成立,又在上值域为,故②由,得,得,得,得,得,∴对任意恒成立,又∵在的最大值为,∴,由①②得,实数的取值范围为.21、(1)或(2)在上单调递减,在上单调递增,证明见解析(3)【解析】(1)由已知得,解方程即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 加工课课件教学课件
- 幼师课件用电教学课件
- 2024年国际旅游开发与合作合同
- 2024年广州市二手房交易合同(标准版)
- 2024年度智能制造设备采购合同
- 2024年度物业公司居民关系协调服务合同
- 2024年大数据中心合作运营合同
- 2024年工程质量检验与确认合同
- 鱼罐头课件教学课件
- 2024年库房租赁与健身器材存放合同
- 香菇种植示范基地项目可行性策划实施方案
- 混凝土硫酸盐侵蚀基本机理研究
- 《机械设计基础A》机械电子 教学大纲
- 水工岩石分级及围岩分类
- 基因扩增实验室常用仪器使用课件
- 斜井敷设电缆措施
- 施工机械设备租赁实施方案
- 牙膏产品知识课件
- 液化气站人员劳动合同范本
- 第一章 教育政策学概述
- 常见土源性寄生虫演示文稿
评论
0/150
提交评论