北京市怀柔区市级名校2024届高一上数学期末经典模拟试题含解析_第1页
北京市怀柔区市级名校2024届高一上数学期末经典模拟试题含解析_第2页
北京市怀柔区市级名校2024届高一上数学期末经典模拟试题含解析_第3页
北京市怀柔区市级名校2024届高一上数学期末经典模拟试题含解析_第4页
北京市怀柔区市级名校2024届高一上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市怀柔区市级名校2024届高一上数学期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若函数f(x)=,则f(f())=()A.4 B.C. D.2.若log2a<0,,则()A.a>1,b>0 B.a>1,b<0C.0<a<1,b>0 D.0<a<1,b<03.下列函数是奇函数且在定义域内是增函数的是()A. B.C. D.4.终边在y轴上的角的集合不能表示成A. B.C. D.5.集合A={x∈N|1≤x<4}的真子集的个数是()A.16 B.8C.7 D.46.已知函数:①;②;③;④;则下列函数图象(第一象限部分)从左到右依次与函数序号的对应顺序是()A.②①③④ B.②③①④C.④①③② D.④③①②7.设函数,A.3 B.6C.9 D.128.下列函数中,既是奇函数,又是增函数的是()①;②;③;④A.①② B.①④C.②③ D.③④9.《九章算术》中,称底面为矩形且有一侧棱垂直于底面的四棱锥为阳马,如图,某阳马的三视图如图所示,则该阳马的最长棱的长度为()A. B.C.2 D.10.若函数取最小值时,则()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.是第___________象限角.12.已知函数f(x)=①f(5)=______;②函数f(x)与函数y=(13.已知函数,的值域为,则实数的取值范围为__________.14.如图,正方形ABCD中,M,N分别是BC,CD中点,若,则______.15.已知函数,为偶函数,则______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.如图,在边长为2的正方形ABCD中,E,F分别是边AB,BC的中点,用向量的方法(用其他方法解答正确同等给分)证明:17.已知函数(1)求的定义域;(2)判断的奇偶性,并说明理由;(3)设,证明:18.我们知道:设函数的定义域为,那么“函数的图象关于原点成中心对称图形”的充要条件是“,”.有同学发现可以将其推广为:设函数的定义域为,那么“函数的图象关于点成中心对称图形”的充要条件是“,”.(1)判断函数的奇偶性,并证明;(2)判断函数的图象是否为中心对称图形,若是,求出其对称中心坐标;若不是,说明理由.19.某品牌手机公司的年固定成本为50万元,每生产1万部手机需增加投入20万元,该公司一年内生产万部手机并全部销售完当年销售量不超过40万部时,销售1万部手机的收入万元;当年销售量超过40万部时,销售1万部手机的收入万元(1)写出年利润万元关于年销售量万部的函数解析式;(2)年销售量为多少万部时,利润最大,并求出最大利润.20.揭阳市某体育用品商店购进一批羽毛球拍,每件进价为100元,售价为160元,每星期可卖出80件.商家决定降价促销,根据市场调查,每降价10元,每星期可多卖出20件.(1)求商家降价前每星期的销售利润为多少元?(2)降价后,商家要使每星期的销售利润最大,应将售价定为多少元?最大销售利润是多少?21.已知函数(为常数)是定义在上的奇函数.(1)求函数的解析式;(2)判断函数的单调性,并用定义证明;(3)若函数满足,求实数的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由题意结合函数的解析式求解函数值即可.【详解】由函数的解析式可得:,.故选C【点睛】本题考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题2、D【解析】,则;,则,故选D3、B【解析】根据指数函数、正切函数的性质,结合奇函数和单调性的性质进行逐一判断即可.【详解】A:当时,,所以该函数不是奇函数,不符合题意;B:由,设,因为,所以该函数是奇函数,,函数是上的增函数,所以函数是上的增函数,因此符合题意;C:当时,,当时,,显然不符合增函数的性质,故不符合题意;D:当时,,显然不符合增函数的性质,故不符合题意,故选:B4、B【解析】分别写出终边落在y轴正半轴和负半轴上的角的集合,然后进行分析运算即可得解.【详解】终边落在y轴正半轴上的角的集合为:,终边落在y轴负半轴上的角的集合为:,故终边在y轴上的角的集合可表示成为,故A选项可以表示;将与取并集为:,故C选项可以表示;将与取并集为:,故终边在y轴上的角的集合可表示成为,故D选项可以表示;对于B选项,当时,或,显然不是终边落在y轴上的角;综上,B选项不能表示,满足题意.故选:B.【点睛】本题考查轴线角的定义,侧重对基础知识的理解的应用,考查逻辑思维能力和分析运算能力,属于常考题.5、C【解析】先用列举法写出集合A,再写出其真子集即可.【详解】解:∵A={x∈N|1≤x<4}={1,2,3},∴A={x∈N|1≤x<4}真子集为:∅,1,故选:C6、D【解析】根据指数函数、幂函数的性质进行选择即可.【详解】①:函数是实数集上的增函数,且图象过点,因此从左到右第三个图象符合;②:函数是实数集上的减函数,且图象过点,因此从左到右第四个图象符合;③:函数在第一象限内是减函数,因此从左到右第二个图象符合;④:函数在第一象限内是增函数,因此从左到右第一个图象符合,故选:D7、C【解析】.故选C.8、D【解析】对每个函【解析】判断奇偶性及单调性即可.【详解】对于①,,奇函数,在和上分别单增,不满足条件;对于②,,偶函数,不满足条件;对于③,,奇函数,在R上单增,符合题意;对于④,,奇函数,在R上单增,符合题意;故选:D9、B【解析】根据三视图画出原图,从而计算出最长的棱长.【详解】由三视图可知,该几何体如下图所示,平面,,则所以最长的棱长为.故选:B10、B【解析】利用辅助角公式化简整理,得到辅助角与的关系,利用三角函数的图像和性质分析函数的最值,计算正弦值即可.【详解】,其中,因为当时取得最小值,所以,故.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、三【解析】根据给定的范围确定其象限即可.【详解】由,故在第三象限.故答案为:三.12、①.-14【解析】①根据函数解析式,代值求解即可;②在同一直角坐标系中画出两个函数的图象,即可数形结合求得结果.【详解】①由题可知:f5②根据f(x)的解析式,在同一坐标系下绘制f(x)与y=(数形结合可知,两个函数有3个交点.故答案为:-14;13、##【解析】由题意,可令,将原函数变为二次函数,通过配方,得到对称轴,再根据函数的定义域和值域确定实数需要满足的关系,列式即可求解.【详解】设,则,∵,∴必须取到,∴,又时,,,∴,∴.故答案为:14、【解析】以,为基底,由平面向量基本定理,列方程求解,即可得出结果.【详解】设,则,由于可得,解得,所以故答案为:【点睛】本题考查平面向量基本定理的运用,考查向量的加法运算,考查运算求解能力,属于中档题.15、4【解析】利用二次函数为偶函数的性质得一次项系数为0,定义域关于原点对称,即可求得的值.【详解】由题意得:解得:故答案为:.【点睛】本题考查二次函数的性质,考查逻辑推理能力和运算求解能力,求解时注意隐含条件的挖掘.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、证明见解析【解析】建立直角坐标系,先写出,再按照数量积的坐标运算证明即可.【详解】如图,以A原点,AB为x轴,AD为y轴建立直角坐标系,则,,故.17、(1)(2)偶函数;理由见解析(3)证明见解析【解析】(1)根据对数函数的真数大于0建立不等式求解;(2)根据函数的奇偶性定义判断即可;(3)利用不等式的性质及对数函数的单调性证明即可.【小问1详解】因为,即,所以函数的定义域是【小问2详解】因为,都有,且,所以函数为偶函数【小问3详解】因为,所以所以所以因为是增函数,所以因为,,所以18、(1)函数为奇函数,证明见解析(2)是中心对称图形,对称中心坐标为【解析】(1)根据奇函数的定义,即可证明结果;(2)根据题意,由函数的解析式可得,即可得结论【小问1详解】解:函数为奇函数证明如下:函数的定义域为R,关于原点对称又所以函数为奇函数.【小问2详解】解:函数的图象是中心对称图形,其对称中心为点解方程得,所以函数的定义域为明显定义域仅关于点对称所以若函数的图象是中心对称图形,则其对称中心横坐标必为设其对称中心为点,则由题意可知有,令,可得,所以所以若函数为中心对称图形,其对称中心必定为点下面论证函数的图象关于点成中心对称图形:即只需证明,,得证19、(1);(2)年销售量为45万部时,最大利润为7150万元.【解析】(1)依题意,分和两段分别求利润=收入-成本,即得结果;(2)分和两段分别求函数的最大值,再比较两个最大值的大小,即得最大利润.【详解】解:(1)依题意,生产万部手机,成本是(万元),故利润,而,故,整理得,;(2)时,,开口向下的抛物线,在时,利润最大值为;时,,其中,在上单调递减,在上单调递增,故时,取得最小值,故在时,y取得最大值而,故年销售量为45万部时,利润最大,最大利润为7150万元.【点睛】方法点睛:分段函数求最值时,需要每一段均研究最值,再比较出最终的最值.20、(1)4800(2)将售价定为150元,最大销售利润是5000元.【解析】(1)由销售利润=单件利润×销售量,即可求商家降价前每星期的销售利润;(2)由题意得销售利润,根据二次函数的性质即可知最大销售利润及对应的售价.【小问1详解】由题意,商家降价前每星期的销售利润为(元);【小问2详解】设售价定为元,则销售利润.当时,有最大值5000∴应将售价定为150元,最大销售利润是5000元.21、(1)(2)在上单调递减,证明见解析(3)【解析】(1)依题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论