2024届四川省重点中学高一数学第一学期期末经典试题含解析_第1页
2024届四川省重点中学高一数学第一学期期末经典试题含解析_第2页
2024届四川省重点中学高一数学第一学期期末经典试题含解析_第3页
2024届四川省重点中学高一数学第一学期期末经典试题含解析_第4页
2024届四川省重点中学高一数学第一学期期末经典试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届四川省重点中学高一数学第一学期期末经典试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.不等式的解集为R,则a的取值范围为()A. B.C. D.2.函数的零点所在的区间()A. B.C. D.3.已知梯形ABCD是直角梯形,按照斜二测画法画出它的直观图A'B'C'D'(如图所示),其中A'D'=2,B'C'=4,A'B'=1,则直角梯形DC边的长度是A.5 B.2C.25 D.4.一个孩子的身高与年龄(周岁)具有相关关系,根据所采集的数据得到线性回归方程,则下列说法错误的是()A.回归直线一定经过样本点中心B.斜率的估计值等于6.217,说明年龄每增加一个单位,身高就约增加6.217个单位C.年龄为10时,求得身高是,所以这名孩子的身高一定是D.身高与年龄成正相关关系5.已知函数在上是减函数,则实数的取值范围是()A. B.C. D.6.如图,在平面四边形ABCD,,,,.若点E为边上的动点,则的取值范围为()A. B.C. D.7.下列四个几何体中,每个几何体的三视图中有且仅有两个视图相同的是A.①② B.②③C.③④ D.②④8.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.9.已知A(3,1),B(-1,2),若∠ACB的平分线方程为y=x+1,则AC所在的直线方程为()A.y=2x+4 B.y=x-3C.x-2y-1=0 D.3x+y+1=010.已知全集,集合则下图中阴影部分所表示的集合为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知正四棱锥的底面边长为4cm,高与斜高的夹角为,则该正四棱锥的侧面积等于________cm212.给出下列命题“①设表示不超过的最大整数,则;②定义:若任意,总有,就称集合为的“闭集”,已知且为的“闭集”,则这样的集合共有7个;③已知函数为奇函数,在区间上有最大值5,那么在上有最小值.其中正确的命题序号是_________.13.已知锐角三角形的边长分别为1,3,,则的取值范围是__________14.已知函数,则函数的零点个数为__________15.若,则__________16.计算:=_______________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,四棱锥中,底面为矩形,面,为的中点(1)证明:平面;(2)设,,三棱锥的体积,求A到平面PBC的距离18.如图,在等腰梯形中,,(1)若与共线,求k的值;(2)若P为边上的动点,求的最大值19.如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.(Ⅰ)证明:BC1//平面A1CD;(Ⅱ)设AA1=AC=CB=2,AB=2,求三棱锥C一A1DE的体积.20.已知函数是定义在R上的奇函数,其中为指数函数,且的图象过定点(1)求函数的解析式;(2)若关于x的方程,有解,求实数a的取值范围;(3)若对任意的,不等式恒成立,求实数k的取值范围21.如图所示四棱锥中,底面,四边形中,,,,求四棱锥的体积;求证:平面;在棱上是否存在点异于点,使得平面,若存在,求的值;若不存在,说明理由

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】对分成,两种情况进行分类讨论,结合判别式,求得的取值范围.【详解】当时,不等式化为,解集为,符合题意.当时,一元二次不等式对应一元二次方程的判别式,解得.综上所述,的取值范围是.故选:D【点睛】本小题主要考查二次项系数含有参数的一元二次不等式恒成立问题的求解,考查分类讨论的数学思想方法,属于基础题.2、B【解析】,,零点定理知,的零点在区间上所以选项是正确的3、B【解析】根据斜二测画法,原来的高变成了45°方向的线段,且长度是原高的一半,∴原高为AB=2而横向长度不变,且梯形ABCD是直角梯形,∴DC=故选B4、C【解析】利用线性回归方程过样本中心点可判断A;由回归方程求出的数值是估计值可判断B、C;根据回归方程的一次项系数可判断D;【详解】对于A,线性回归方程一定过样本中心点,故A正确;对于B,由于斜率是估计值,可知B正确;对于C,当时,求得身高是是估计值,故C错误;对于D,线性回归方程的一次项系数大于零,故身高与年龄成正相关关系,故D正确;故选:C【点睛】本题考查了线性回归方程的特征,需掌握这些特征,属于基础题.5、C【解析】根据函数是上的减函数,则两段函数都是减函数,并且在分界点处需满足不等式,列不等式求实数的取值范围.【详解】由条件可知,函数在上是减函数,需满足,解得:.故选:C6、A【解析】由已知条件可得,设,则,由,展开后,利用二次函数性质求解即可.【详解】∵,因为,,,所以,连接,因为,所以≌,所以,所以,则,设,则,∴,,,,所以,因为,所以.故选:A7、D【解析】图①的三种视图均相同;图②的正视图与侧视图相同;图③的三种视图均不相同;图④的正视图与侧视图相同.故选D8、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.9、C【解析】设点A(3,1)关于直线的对称点为,则,解得,即,所以直线的方程为,联立解得,即,又,所以边AC所在的直线方程为,选C.点睛:本题主要考查了直线方程的求法,属于中档题.解题时要结合实际情况,准确地进行求解10、C【解析】根据题意,结合Venn图与集合间的基本运算,即可求解.【详解】根据题意,易知图中阴影部分所表示.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、32【解析】在正四棱锥的高和斜高所在的直角三角形中计算出斜高后,根据三角形的面积公式即可求出侧面积.【详解】因为正四棱锥的底面边长为4cm,高与斜高的夹角为,所以斜高为cm,所以该正四棱锥的侧面积等于cm2故答案为:32.【点睛】本题考查了正棱锥的结构特征,考查了求正四棱锥的侧面积,属于基础题.12、①②【解析】对于①,如果,则,也就是,所以,进一步计算可以得到该和为,故①正确;对于②,我们把分成四组:,由题设可知不是“闭集”中的元素,其余三组元素中的每组元素必定在“闭集”中同时出现或同时不出现,故所求的“闭集”的个数为,故②正确;对于③,因为在上的最大值为,故在上的最大值为,所以在上的最小值为,在上的最小值为,故③错.综上,填①②点睛:(1)根据可以得到,因此,这样的共有,它们的和为,依据这个规律可以写出和并计算该和(2)根据闭集的要求,中每组元素都是同时出现在闭集中或者同时不出现在闭集中,故可以根据子集的个数公式来计算(3)注意把非奇非偶函数转化为奇函数或偶函数来讨论13、【解析】由三角形中三边关系及余弦定理可得应满足,解得,∴实数的取值范围是答案:点睛:根据三角形的形状判断边满足的条件时,需要综合考虑边的限制条件,在本题中要注意锐角三角形这一条件的运用,必须要考虑到三个内角的余弦值都要大于零,并由此得到不等式,进一步得到边所要满足的范围14、3【解析】由,得,作出y=f(x),的图象,由图象可知共有3个交点,故函数的零点个数为3故答案为:315、【解析】先求出的值,然后再运用对数的运算法则求解出和的值,最后求解答案.【详解】若,则,所以.故答案为:【点睛】本题考查了对数的运算法则,熟练掌握对数的各运算法则是解题关键,并能灵活运用法则来解题,并且要计算正确,本题较为基础.16、【解析】考点:两角和正切公式点评:本题主要考查两角和的正切公式变形的运用,抓住和角是特殊角,是解题的关键.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)到平面的距离为【解析】(1)连结BD、AC相交于O,连结OE,则PB∥OE,由此能证明PB∥平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离试题解析:(1)设BD交AC于点O,连结EO.因为ABCD为矩形,所以O为BD的中点又E为PD的中点,所以EO∥PB又EO平面AEC,PB平面AEC所以PB∥平面AEC.(2)由,可得.作交于由题设易知,所以故,又所以到平面的距离为法2:等体积法由,可得.由题设易知,得BC假设到平面的距离为d,又因为PB=所以又因为(或),,所以考点:线面平行的判定及点到面的距离18、(1);(2)12【解析】(1)选取为基底,用基底表示其他向量后,由向量共线可得;(2)设,,求得,由函数知识得最大值【详解】(1)不共线,以它们为基底,由已知,又与共线,所以存在实数,使得,即,解得;(2)等腰梯形中,,,则,设,,则,,所以时,取得最大值12【点睛】关键点点睛:本题考查向量的共线,向量的数量积,解题关键是以为基底,其它向量都用基底表示,然后求解计算19、(Ⅰ)见解析(Ⅱ)【解析】(Ⅰ)连接AC1交A1C于点F,则DF为三角形ABC1的中位线,故DF∥BC1.再根据直线和平面平行的判定定理证得BC1∥平面A1CD.(Ⅱ)由题意可得此直三棱柱的底面ABC为等腰直角三角形,由D为AB的中点可得CD⊥平面ABB1A1.求得CD的值,利用勾股定理求得A1D、DE和A1E的值,可得A1D⊥DE.进而求得S△A1DE的值,再根据三棱锥C-A1DE的体积为•S△A1DE•CD,运算求得结果试题解析:(1)证明:连结AC1交A1C于点F,则F为AC1中点又D是AB中点,连结DF,则BC1∥DF.3分因DF⊂平面A1CD,BC1不包含于平面A1CD,4分所以BC1∥平面A1CD.5分(2)解:因为ABC﹣A1B1C1是直三棱柱,所以AA1⊥CD.由已知AC=CB,D为AB的中点,所以CD⊥AB.又AA1∩AB=A,于是CD⊥平面ABB1A1.8分由AA1=AC=CB=2,得∠ACB=90°,,,,A1E=3,故A1D2+DE2=A1E2,即DE⊥A1D10分所以三菱锥C﹣A1DE的体积为:==1.12分考点:直线与平面平行的判定;棱柱、棱锥、棱台的体积20、(1)(2)(3)【解析】(1)设出的解析式,根据点求得的解析式.根据为奇函数,求得解析式.(2)根据的单调性和值域,求得的取值范围.(3)证得的单调性,结合的奇偶性化简不等式,得到对任意的,,利用二次函数的性质求得的取值范围.【详解】(1)设(,且),则,所以(舍去)或,所以,又为奇函数,且定义域为R,所以,即,所以,所以(2)由于为上减函数,由于,所以,所以,所以.(3)设,则因为,所以,所以,所以,即,所以函数在R上单调递减要使对任意的,恒成立,即对任意的,恒成立因为为奇函数,所以恒成立又因函数在R上单调递减,所以对任意的,恒成立,即对任意的,恒成立令,,时,成立;时,所以,,,无解综上,【点睛】本小题主要考查指数函数解析式的求法,考查分式型函数值域的求法,考查利用函数的奇偶性和单调性解函数不等式,考查二次函数的性质,考查分类讨论的数学思想方法,综合性较强,属于难题.21、(1)4;(2)见解析;(3)不存在.【解析】利用四边形是直角梯形,求出,结合底面,利用棱锥的体积公式求解即可求;先证明,,结合,利用线面垂直的判定定理可得平面;用反证法证明,假设存在点异于点使得平面证明平面平面,与平面与平面相交相矛盾,从而可得结论【详解】显然四边形ABCD是直角梯形,又底

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论