版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东新高一数学第一学期期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,若实数,则函数的零点个数为()A.0 B.1C.2 D.32.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-3.若是第三象限角,且,则是A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.若直线与直线垂直,则()A.6 B.4C. D.5.当时,在同一平面直角坐标系中,函数与的图象可能为A. B.C. D.6.已知集合,,若,则实数的值为()A. B.C. D.7.在底面为正方形的四棱锥中,侧面底面,,,则异面直线与所成的角为()A. B.C. D.8.已知直线与直线平行且与圆:相切,则直线的方程是A. B.或C. D.或9.已知幂函数的图象过点,则的值为()A.3 B.9C.27 D.10.设,则等于A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.设,,则______12.已知水平放置的△ABC按“斜二测画法”得到如图所示的直观图,其中B′O′=C′O′=2,∠B'A'C'=90°,则原△ABC的面积为______13.函数(且)的定义域为__________14.函数在______单调递增(填写一个满足条件的区间)15.已知函数是定义在上的奇函数,且当时,,则的值为__________16.已知函数在区间是单调递增函数,则实数的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是奇函数,且.(1)求函数的解析式,并判定函数在区间上的单调性(无需证明);(2)已知函数且,已知在的最大值为2,求的值.18.已知集合,集合.(1)求.(2)求,求的取值范围.19.已知函数,.(1)求方程的解集;(2)定义:.已知定义在上的函数,求函数的解析式;(3)在(2)的条件下,在平面直角坐标系中,画出函数的简图,并根据图象写出函数的单调区间和最小值.20.已知向量满足,.(1)若的夹角为,求;(2)若,求与的夹角.21.在中,角A,B,C为三个内角,已知,.(1)求的值;(2)若,D为AB的中点,求CD的长及的面积.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】根据分段函数做出函数的图象,运用数形结合的思想可求出函数的零点的个数,得出选项.【详解】令,得,根据分段函数的解析式,做出函数的图象,如下图所示,因为,由图象可得出函数的零点个数为3个,故选:D.【点睛】本题考查函数零点,考查学生分析解决问题的能力,关键在于做出函数的图象,运用数形结合的思想得出零点个数,属于中档题.多选题2、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B3、D【解析】根据是第三象限角,写出角的集合,进一步得到的集合,再根据得到答案【详解】是第三象限角,,则,即是第二象限或者第四象限角,,是第四象限角故选:D4、A【解析】由两条直线垂直的条件可得答案.【详解】由题意可知,即故选:A.5、C【解析】当时,单调递增,单调递减故选6、B【解析】根据集合,,可得,从而可得.【详解】因为,,所以,所以.故选:B7、C【解析】由已知可得PA⊥平面ABCD,底面ABCD为正方形,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,因为PB∥CM,所以ACM就是异面直线PB与AC所成的角,再求解即可.【详解】由题意:底面ABCD为正方形,侧面底面,,面面,PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,∵PM∥AD,AD∥BC,PM=AD,AD=BC∴PBCM是平行四边形,∴PB∥CM,所以∠ACM就是异面直线PB与AC所成的角设PA=AB=a,在三角形ACM中,,∴三角形ACM是等边三角形所以∠ACM等于60°,即异面直线PB与AC所成的角为60°故选:C.【点睛】思路点睛:先利用面面垂直得到PA⊥平面ABCD,分别过P,D点作AD,AP的平行线交于M,连接CM,AM,得到∠ACM就是异面直线PB与AC所成的角8、D【解析】圆的圆心为,半径为,因为直线,所以,设直线的方程为,由题意得或所以,直线的方程或9、C【解析】求出幂函数的解析式,然后求解函数值【详解】幂函数的图象过点,可得,解得,幂函数的解析式为:,可得(3)故选:10、D【解析】由题意结合指数对数互化确定的值即可.【详解】由题意可得:,则.本题选择D选项.【点睛】本题主要考查对数与指数的互化,对数的运算性质等知识,意在考查学生的转化能力和计算求解能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由,根据两角差的正切公式可解得【详解】,故答案为【点睛】本题主要考查了两角差的正切公式的应用,属于基础知识的考查12、8【解析】根据“斜二测画法”原理还原出△ABC,利用边长对应关系计算原△ABC的面积即可详解】根据“斜二测画法”原理,还原出△ABC,如图所示;由B′O′=C′O′=2,∠B'A'C'=90°,∴O′A′B′C′=2,∴原△ABC的面积为SBC×OA4×4=8故答案为8【点睛】本题考查了斜二测画法中原图和直观图面积的计算问题,是基础题13、【解析】根据对数的性质有,即可求函数的定义域.【详解】由题设,,可得,即函数的定义域为.故答案为:14、(答案不唯一)【解析】先求出函数的定义域,再换元,然后利用复合函数单调性的求法求解详解】由,得,解得或,所以函数的定义域为,令,则,因为在上单调递减,在上单调递增,而在定义域内单调递增,所以在上单调递增,故答案为:(答案不唯一)15、-1【解析】因为为奇函数,故,故填.16、【解析】求出二次函数的对称轴,即可得的单增区间,即可求解.【详解】函数的对称轴是,开口向上,若函数在区间是单调递增函数,则,故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);函数在区间上单调递减,在上单调递增(2)或【解析】(1)根据奇函数的性质及,即可得到方程组,求出、的值,即可得到函数解析式,再根据对勾函数的性质判断即可;(2)分和两种情况讨论,结合对数型复合函数的单调性计算可得;【小问1详解】解:函数的定义域为,是奇函数,且,且又.经检验,满足题意,故.当时,时等号成立,当时,单调递减;当时,单调递增.【小问2详解】解:①当时,是减函数,故当取得最小值时,且取得最大值2,而在区间上单调递增,所以在区间上最小值为,故的最大值是,所以.②当时,是增函数,故当取得最大值时,且取得最大值2,而在区间上单调递增,所以在区间上的最大值为,故的最大值是,所以.综上所述,或.18、(1)(2)【解析】(1)由不等式,求得,即可求解;(2)由,得到,列出不等式组,即可求解.【小问1详解】解:由,即,可得,可得集合.【小问2详解】解:因为,且集合,又因为,即,当时,即,可得,此时满足;当时,则满足,解得,综上可得,,即实数的取值范围.19、(1)(2)(3)图象见解析,单调递减区间是,单调递增区间是,最小值为1【解析】(1)根据题意可得,平方即可求解.(2)由题意比较与大小,从而可得出答案.(3)由(2)得到的函数关系,作出函数图像,根据图像可得函数的单调区间和最小值.【小问1详解】由,得且,解得,;所以方程的解集为【小问2详解】由已知得.【小问3详解】函数的图象如图实线所示:函数的单调递减区间是,单调递增区间是,其最小值为1.20、(1)(2)【解析】(1)利用公式即可求得;(2)利用向量垂直的等价条件以及夹角公式即可求解.【详解】解:(1)由已知,得,所以,所以.(2)因为,所以.所以,即,所以.又,所以,即与的夹角为.【点睛】主要考查向量模、夹角的求解,数量积的计算以及向量垂直的等价条件的运用.属于基础题.21、(1).(2),的面积.【解析】(1)由可求出,再利用展开即可得出答案;(2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 房屋认购协议书效力
- 展会白金赞助合同
- 合作开饭馆协议书格式
- 子女抚养协议书范文经典版
- 2024个人股权融资合作协议书
- 个人木材买卖合同范本
- 广告网络推广合同范例
- 常州全日制工作合同
- 房地产面积鉴定协议
- 成都市商品代销合同模板
- 教育局学校食品安全事故应急预案
- 义务教育信息科技课程标准(2022年版)考试题库及答案
- 2024年国家开放大学(电大)-混凝土结构设计(A)考试近5年真题集锦(频考类试题)带答案
- 2024-2025学年人教版八年级物理上学期期中模拟卷
- 新员工三级安全教育考试试题参考答案
- 统编版(2024)语文七年级上册 第10课 往事依依 公开课一等奖创新教案
- 危大工程清单及安全管理措施(样表)-纯图版
- 2024中国东方航空技术限公司全球校园招聘高频500题难、易错点模拟试题附带答案详解
- 2025届江苏省苏州市梁丰八年级数学第一学期期末学业质量监测试题含解析
- 2024-2030年中国氦液化系统市场深度调查与未来发展前景预测研究报告
- 2024年全国统考“营养师或营养指导员”相关知识考前试题库与参考答案
评论
0/150
提交评论