版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山东省德州市平原中英文实验中学数学高一上期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知等边两个顶点,且第三个顶点在第四象限,则边所在的直线方程是A. B.C. D.2.某班有50名学生,编号从1到50,现在从中抽取5人进行体能测试,用系统抽样确定所抽取的第一个样本编号为3,则第四个样本编号是A.13 B.23C.33 D.433.对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”.已知直线,与圆的位置关系是“平行相交”,则实数的取值范围为A. B.C. D.4.已知,且,则的最小值为()A.3 B.4C.6 D.95.已知函数,的值域为,则实数的取值范围是A. B.C. D.6.已知实数满足,则函数的零点所在的区间是()A. B.C. D.7.已知函数的值域为R,则a的取值范围是()A. B.C. D.8.若函数在定义域上的值域为,则()A. B.C. D.9.直线与圆相切,则的值为()A. B.C. D.10.函数的单调递减区间是A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.在中,角、、所对的边为、、,若,,,则角________12.已知,则_______.13.已知正实数x,y满足,则的最小值为______14.已知,则_____.15.已知,,当时,关于的不等式恒成立,则的最小值是_________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知二次函数满足,且求的解析式;设,若存在实数a、b使得,求a的取值范围;若对任意,都有恒成立,求实数t的取值范围17.已知函数,.(1)解不等式:;(2)若函数在区间上存在零点,求实数的取值范围;(3)若函数的反函数为,且,其中为奇函数,为偶函数,试比较与的大小.18.已知函数在区间上的最大值为6,(1)求常数m的值;(2)若,且,求的值.19.已知集合,(1)当时,求;(2)若,求a的取值范围20.如图,在平行四边形中,分别是上的点,且满,记,,试以为平面向量的一组基底.利用向量的有关知识解决下列问题;(1)用来表示向量;(2)若,且,求;21.(1)设函数.若不等式对一切实数恒成立,求实数的取值范围;(2)解关于的不等式.
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】如图所示,直线额倾斜角为,故斜率为,由点斜式得直线方程为.考点:直线方程.2、C【解析】根据系统抽样的定义,求出抽取间隔,即可得到结论.【详解】由题意,名抽取名学生,则抽取间隔为,则抽取编号为,则第四组抽取的学生编号为.故选:【点睛】本题考查系统抽样,等间距抽取,属于简单题.3、D【解析】根据定义先求出l1,l2与圆相切,再求出l1,l2与圆外离,结合定义即可得到答案.【详解】圆C的标准方程为(x+1)2+y2=b2.由两直线平行,可得a(a+1)-6=0,解得a=2或a=-3.当a=2时,直线l1与l2重合,舍去;当a=-3时,l1:x-y-2=0,l2:x-y+3=0.由l1与圆C相切,得,由l2与圆C相切,得.当l1、l2与圆C都外离时,.所以,当l1、l2与圆C“平行相交”时,b满足,故实数b的取值范围是(,)∪(,+∞)故选D.4、A【解析】将变形为,再将变形为,整理后利用基本不等式可求最小值.【详解】因为,故,故,当且仅当时等号成立,故的最小值为3.故选:A.【点睛】方法点睛:应用基本不等式求最值时,需遵循“一正二定三相等”,如果原代数式中没有积为定值或和为定值,则需要对给定的代数变形以产生和为定值或积为定值的局部结构.求最值时要关注取等条件的验证.5、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.6、B【解析】由已知可得,结合零点存在定理可判断零点所在区间.【详解】由已知得,所以,又,,,,所以零点所在区间为,故选:B.7、D【解析】首先求出时函数的值域,设时,的值域为,依题意可得,即可得到不等式组,解得即可;【详解】解:由题意可得当时,所以的值域为,设时,的值域为,则由的值域为R可得,∴,解得,即故选:D8、A【解析】的对称轴为,且,然后可得答案.【详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A9、D【解析】由圆心到直线的距离等于半径可得【详解】由题意圆标准方程为,圆心坐标为,半径为1,所以,解得故选:D10、B【解析】是增函数,只要求在定义域内的减区间即可【详解】解:令,可得,故函数的定义域为,则本题即求在上的减区间,再利用二次函数的性质可得,在上的减区间为,故选B【点睛】本题考查复合函数的单调性,解题关键是掌握复合函数单调性的性质二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、.【解析】利用余弦定理求出的值,结合角的取值范围得出角的值.【详解】由余弦定理得,,,故答案为.【点睛】本题考查余弦定理的应用和反三角函数,解题时要充分结合元素类型选择正弦定理和余弦定理解三角形,考查计算能力,属于中等题.12、【解析】将条件平方可得答案.【详解】因为,所以,所以故答案为:13、【解析】令,转化条件为方程有解,运算可得【详解】令,则,化简得,所以,解得或(舍去),当时,,符合题意,所以得最小值为.故答案为:.14、3【解析】利用诱导公式求出,再将所求值的式子弦化切,代值计算即得.【详解】因,所以.故答案为:3.15、4【解析】由题意可知,当时,有,所以,所以点睛:本题考查基本不等式的应用.本题中,关于的不等式恒成立,则当时,有,得到,所以.本题的关键是理解条件中的恒成立三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2)或;(3).【解析】利用待定系数法求出二次函数的解析式;求出函数的值域,再由题意得出关于a的不等式,求出解集即可;由题意知对任意,都有,讨论t的取值,解不等式求出满足条件的t的取值范围【详解】解:设,因为,所以;;;;;解得:;;函数,若存在实数a、b使得,则,即,,解得或,即a的取值范围是或;由题意知,若对任意,都有恒成立,即,故有,由,;当时,在上为增函数,,解得,所以;当,即时,在区间上是单调减函数,,解得,所以;当,即时,,若,则,解得;若,则,解得,所以,应取;综上所述,实数t的取值范围是【点睛】本题考查了不等式恒成立问题,也考查了分类讨论思想与转化思想,属于难题17、(1)或;(2);(3)【解析】(1)根据二次不等式和对数不等式的解法求解即可得到所求;(2)由可得,故所求范围即为函数在区间上的值域,根据换元法求出函数的值域即可;(3)根据题意可求出,进而得到和,于是可得大小关系【详解】(1)由,得或,即或,解得,所以原不等式的解集为(2)令,得令,由,得,则,其中令,则在上单调递增,所以,即,所以.故实数的取值范围为(3)由题意得,即,因此,因为为奇函数,为偶函数,所以,解得,所以,,因此另法:,所以【点睛】(1)本题考查函数知识的综合运用,解题时要注意函数、方程、不等式间的关系的应用,根据条件及要求合理求解(2)解决函数零点问题时,可转化为方程解得问题处理,也可利用分离变量的方法求解,转化为求具体函数值域的问题,解题时注意转化的合理性和等价性18、(1);(2)【解析】(1)利用二倍角公式以及辅助角公式可得,再利用三角函数的性质即可求解.(2)代入可得,从而求出,再利用诱导公式即可求解.【详解】(1),因为,则,所以,解得.(2),即,解得,,,所以,,又,所以.19、(1)(2)【解析】(1)解一元二次不等式求得集合,由补集和并集的定义可运算求得结果;(2)分别在和两种情况下,根据交集为空集可构造不等式求得结果.【小问1详解】由题意得,或,,.【小问2详解】,当时,,符合题意,当时,由,得,故a的取值范围为20、(1);(2).【解析】(1)由平面向量的线性运算法则结合图形即可得解;(2)由平面向量数量积的运算律可得,进而可得,再由运算即可得解.【详解】(1)∵在平行四边形中,,∴;(2)由(1)可知:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2025学年新教材高中英语Unit2TravellingAroundReadingandThinking教案新人教版必修第一册
- 2024年体育专用地坪漆合作协议书
- 2024-2025学年高中化学课时作业8酸碱盐在水溶液中的电离含解析新人教版必修1
- 2023届新高考新教材化学人教版一轮学案-第四章第1讲 氯及其化合物
- 2023届新高考新教材化学鲁科版一轮专项提能特训二 学会拆分化工流程题解一通百
- 2024年大功率电源及系统项目发展计划
- 玉溪师范学院《建筑速写》2022-2023学年第一学期期末试卷
- 玉溪师范学院《管理学原理》2021-2022学年第一学期期末试卷
- 2024合同注意事项
- 2024年聚醚多元醇合作协议书
- 第五章一元一次方程微专题-应用题表格类训练 (北师大版数学七年级上册)
- 人工湖清理淤泥施工方案
- 改革开放简史智慧树知到课后章节答案2023年下北方工业大学
- (17.6)-第五讲 马克思主义的鲜明特征
- 40万豪华装修清单
- 浅谈新课标下的小学英语课堂教学
- 江苏省住宅物业委托服务合同(示范文本)
- 我的家乡-黑龙江-英语PPT
- 新产品风险分析报告
- 网络安全教育ppt课件(图文)
- PMUT器件及其制备方法
评论
0/150
提交评论