北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题含解析_第1页
北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题含解析_第2页
北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题含解析_第3页
北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题含解析_第4页
北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市西城区北京师范大学附中2023年高一上数学期末监测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若函数在上是增函数,则实数k的取值范围是()A. B.C. D.2.若函数(,且)在区间上单调递增,则A., B.,C., D.,3.长方体中,,,则直线与平面ABCD所成角的大小A. B.C. D.4.已知集合A={x|x<2},B={x≥1},则A∪B=()A. B.C. D.R5.设函数在区间上为偶函数,则的值为()A.-1 B.1C.2 D.36.直线的倾斜角为A. B.C. D.7.已知集合,区间,则=()A. B.C. D.8.已知函数的图象的对称轴为直线,则()A. B.C. D.9.已知集合,则()A. B.或C. D.或10.直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则直线l2的斜率为()A. B.C.1 D.﹣1二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数,若是上的单调递增函数,则的取值范围是__________12.利用随机数表法对一个容量为90,编号为00,01,02,…,89的产品进行抽样检验,抽取一个容量为10的样本,若选定从第2行第3列的数开始向右读数(下面摘取了随机数表中的第1行至第5行),根据下图,读出的第3个数是___________.13.已知集合A={2,log2m},B={m,n}(m,n∈R),且,则A∪B=___________.14.已知幂函数在其定义域上是增函数,则实数___________15.若存在常数和,使得函数和对其公共定义域上的任意实数都满足:和恒成立,则称此直线为和的“隔离直线”.已知函数,,若函数和之间存在隔离直线,则实数的取值范围是______三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,命题:,;命题:,.(1)若是真命题,求的最大值;(2)若是真命题,是假命题,求的取值范围.17.年新冠肺炎仍在世界好多国家肆虐,并且出现了传染性更强的“德尔塔”变异毒株、拉姆达”变异毒株,尽管我国抗疫取得了很大的成绩,疫情也得到了很好的遏制,但由于整个国际环境的影响,时而也会出现一些散发病例,故而抗疫形势依然艰巨,日常防护依然不能有丝毫放松.在日常防护中,口罩是必不可少的防护用品.已知某口罩的固定成本为万元,每生产万箱,需另投入成本万元,为年产量单位:万箱;已知通过市场分析,如若每万箱售价万元时,该厂年内生产的商品能全部售完.利润销售收入总成本(1)求年利润与万元关于年产量万箱的函数关系式;18.已知A,B,C是三角形三内角,向量,,且(1)求角A;(2)若,求19.已知集合,.(1)当时,求;(2)在①,②,③这三个条件中任选一个,补充在(2)问中的横线上,并求解.若___________,求实数的取值范围.(注:如果选择多个条件分别解答,按第一个解答计分)20.某种商品在天内每件的销售价格(元)与时间(天)的函数关系为,该商品在天内日销售量(件)与时间(天)之间满足一次函数关系,具体数据如下表:第天(Ⅰ)根据表中提供的数据,求出日销售量关于时间的函数表达式;(Ⅱ)求该商品在这天中的第几天的日销售金额最大,最大值是多少?21.已知函数f(x)是偶函数,且x≤0时,f(x)=-(其中e为自然对数的底数)(Ⅰ)比较f(2)与f(-3)大小;(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】根据二次函数的对称轴在区间的左边,即可得到答案;【详解】由题意得:,故选:C2、B【解析】函数在区间上单调递增,在区间内不等于,故当时,函数才能递增故选3、B【解析】连接,根据长方体的性质和线面角的定义可知:是直线与平面ABCD所成角,在底面ABCD中,利用勾股定理可以求出,在中,利用锐角三角函数知识可以求出的大小.【详解】连接,在长方体中,显然有平面ABCD,所以是直线与平面ABCD所成角,在底面ABCD中,,在中,,故本题选B.【点睛】本题考查了线面角的求法,考查了数学运算能力.4、D【解析】利用并集定义直接求解即可【详解】∵集合A={x|x<2},B={x≥1},∴A∪B=R.故选D【点睛】本题考查并集的求法,考查并集定义、不等式性质等基础知识,考查运算求解能力,是基础题5、B【解析】由区间的对称性得到,解出b;利用偶函数,得到,解出a,即可求出.【详解】因为函数在区间上为偶函数,所以,解得又为偶函数,所以,即,解得:a=-1.所以.故选:B6、B【解析】设直线x﹣y+3=0的倾斜角为θ由直线x﹣y+3=0化为y=x+3,∴tanθ=,∵θ∈[0,π),∴θ=60°故选B7、D【解析】利用交集的运算律求【详解】∵,,∴.故选:D.8、A【解析】根据二次函数的图像的开口向上,对称轴为,可得,且函数在上递增,再根据函数的对称性以及单调性即可求解.【详解】二次函数的图像的开口向上,对称轴为,且函数在上递增,根据二次函数的对称性可知,又,所以,故选:A【点睛】本题考查了二次函数的单调性以及对称性比较函数值的大小,属于基础题.9、C【解析】直接利用补集和交集的定义求解即可.【详解】由集合,可得:或,故选:C.【点睛】关键点点睛:本该考查了集合的运算,解决该题的关键是掌握补集和交集的定义..10、C【解析】利用直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直,则,解出即可.【详解】因为直线l1:x+ay+1=0与l2:(a﹣3)x+2y﹣5=0(a∈R)互相垂直.所以,即.解得:.故选:C【点睛】本题考查由两条直线互相垂直求参数的问题,属于基础题二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用函数的单调性求出a的取值范围,再求出的表达式并其范围作答.【详解】因函数是上的单调递增函数,因此有,解得,所以.故答案为:12、75【解析】根据随机数表法进行抽样即可.【详解】从随机数表的第2行第3列的数开始向右读数,第一个编号为62,符合;第二个编号为38,符合;第三个编号为97,大于89,应舍去;下一个编号为75,符合.所以读出的第3个数是:75.故答案为:75.13、【解析】根据条件得到,解出,进而得到.【详解】因为,所以且,所以,解得:,则,,所以.故答案为:14、【解析】根据幂函数定义,可求得a值,根据其单调性,即可得答案.【详解】因为为幂函数,所以,解得或,又在其定义域上是增函数,所以,所以.故答案为:15、【解析】由已知可得、恒成立,可求得实数的取值范围.【详解】因为函数和之间存在隔离直线,所以,当时,可得对任意的恒成立,则,即,当时,可得对恒成立,令,则有对恒成立,所以或,解得或,综上所述,实数的取值范围是.故答案为:.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)1;(2).【解析】(1)根据题意可得,为真,令,只需即可求解.(2)根据题意可得与一真一假,当是真命题时,可得或,分别求出当真假或假真时的取值范围,最后取并集即可求解.【详解】解:(1)若命题:,为真,∴则令,,又∵,∴,∴的最大值为1.(2)因为是真命题,是假命题,所以与一真一假,当是真命题时,,解得或,当是真命题,是假命题时,有,解得;当是假命题,是真命题时,有,解得;综上,的取值范围为.17、(1)(2)万箱【解析】(1)分,两种情况,结合利润销售收入总成本公式,即可求解(2)根据已知条件,结合二次函数的性质,以及基本不等式,分类讨论求得最大值后比较可得【小问1详解】当时,,当时,,故关于的函数解析式为小问2详解】当时,,故当时,取得最大值,当时,,当且仅当,即时,取得最大值,综上所述,当时,取得最大值,故年产量为万箱时,该口罩生产厂家所获得年利润最大18、(1)(2)【解析】(1)用数量积的坐标运算表示出,有,再由两角差的正弦公式化为一个三角函数式,最终求得;(2)化简,可直接去分母,注意求得结果后检验分母是否为0(本题解法),也可先化简已知式为,再变形得,由可得结论试题解析:(1)∵,∴,即,,,∵,,∴,∴(2)由题知:,整理得,∴,∴,∴或,而使,舍去,∴,∴考点:数量积坐标运算,两角和与差的正弦公式、正切公式19、(1)(2)选①或.选②③或.【解析】(1)分别求出两个集合,再根据并集的运算即可得解;(2)选①,根据,得,分和两种情况讨论即可得解.选②,根据,得,分和两种情况讨论即可得解.选③,根据,分和两种情况讨论即可得解.【小问1详解】解:当时,,,所以;【小问2详解】解:选①,因为,所以,当时,,解得;当时,因为,所以,解得,综上所述,或.选②,因为,所以,或,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.选③,当时,,解得,符合题意;当时,因为,所以或,解得或,综上所述,或.20、(Ⅰ)(,,)(Ⅱ)第天的日销售金额最大,为元【解析】(Ⅰ)设,代入表中数据可求出,得解析式;(Ⅱ)日销售金额为,根据(1)及已知可得其表达式,这是一个分段函数,分段求出最大值后比较即得最大值【详解】(Ⅰ)设日销售量关于时间的函数表达式为,依题意得:,解之得:,所以日销售量关于时间的函数表达式为(,,).(Ⅱ)设商品的日销售金额为(元),依题意:,所以,即:.当,时,,当时,;当,时,,当时,;所以该商品在这天中的第天的日销售金额最大,为元.【点睛】本题考查函数模型应用,由所给函数模型求出解析式是解题关键.本题属于中档题21、(I);(II).【解析】(Ⅰ)由偶函数在时递减,时递增,即可判断(2)和的大小关系;(Ⅱ)由题意可得在时有且只有一个实根,可得在时有且只有一个实根,可令,则,求得导数判断单调性,计算可得所求范围【详解】解:(Ⅰ)函数f(x)是偶函数,且x≤0时,f(x)=-,可得f(x)在x<0时递减,x>0时递增,由f(-3)=f(3),可得f(2)<f(3),即有f(2)<f(-3);(Ⅱ)设g(x)=2(1-3a)ex+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,即为2(1-3a)ex+2a+=-在x>0时有且只有一个实根,可得3a=在x>0时有且只有一个实根,可令t=ex(t>1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论