版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届福建省永春三中高一上数学期末复习检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.如图,一个水平放置的平面图形的直观图是边长为2的菱形,且,则原平面图形的周长为()A. B.C. D.82.公元前6世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为0.618,这一数值也可以表示为.若.则()A. B.C.2 D.3.函数(且)的图像恒过定点()A. B.C. D.4.下列函数中,是偶函数且值域为的是()A. B.C. D.5.函数的图象的一个对称中心是()A B.C. D.6.已知函数,若有且仅有两个不同实数,,使得则实数的值不可能为A. B.C. D.7.要得到函数的图象,只需把函数的图象上所有的点()A.向左平行移动个单位长度 B.向右平行移动个单位长度C.向左平行移动个单位长度 D.向右平行移动个单位长度8.对空间中两条不相交的直线和,必定存在平面,使得()A. B.C. D.9.已知,则的值是A.1 B.3C. D.10.函数f(x)=2x-5零点在下列哪个区间内().A.(0,1) B.(1,2)C.(2,3) D.(3,4)11.已知直线、、与平面、,下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则12.已知,,则的值为A. B.C. D.二、填空题(本大题共4小题,共20分)13.设x、y满足约束条件,则的最小值是________.14.已知,,且,则的最小值为______15.命题“”的否定是________________.16.函数的零点个数是________.三、解答题(本大题共6小题,共70分)17.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值18.已知,求下列各式的值:(1);(2).19.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.20.已知函数.(1)求、、的值;(2)若,求a的值.21.已知全集,集合,.(1)求;(2)若集合,且,求实数a的取值范围.22.已知函数,.(1)求函数的最小正周期和单调递减区间;(2)用括号中的正确条件填空.函数的图象可以用下面的方法得到:先将正弦曲线,向___________(左,右)平移___________(,)个单位长度;在纵坐标不变的条件下再把所得曲线上各点的横坐标变为原来的___________(,2)倍,再在横坐标不变的条件下把所得曲线上各点的纵坐标变为原来的___________(,2)倍,最后再把所得曲线向___________(上,下)平移___________(1,2)个单位长度.
参考答案一、选择题(本大题共12小题,共60分)1、B【解析】利用斜二测画法还原直观图即得.【详解】由题可知,∴,还原直观图可得原平面图形,如图,则,∴,∴原平面图形的周长为.故选:B.2、A【解析】由已知、同角三角函数关系、辅助角公式及诱导公式可得解.【详解】由得,∴.故选:A.3、C【解析】本题可根据指数函数的性质得出结果.【详解】当时,,则函数的图像恒过定点,故选:C.4、D【解析】分别判断每个选项函数的奇偶性和值域即可.【详解】对A,,即值域为,故A错误;对B,的定义域为,定义域不关于原点对称,不是偶函数,故B错误;对C,的定义域为,定义域不关于原点对称,不是偶函数,故C错误;对D,的定义域为,,故是偶函数,且,即值域为,故D正确.故选:D.5、B【解析】利用正弦函数的对称性质可知,,从而可得函数的图象的对称中心为,再赋值即可得答案【详解】令,,解得:,.所以函数的图象的对称中心为,.当时,就是函数的图象的一个对称中心,故选:B.6、D【解析】利用辅助角公式化简,由,可得,根据在上有且仅有两个最大值,可求解实数的范围,从而可得结果【详解】函数;由,可得,因为有且仅有两个不同的实数,,使得所以在上有且仅有两个最大值,因为,,则;所以实数的值不可能为,故选D【点睛】本题主要考查辅助角公式的应用、三角函数的图象与性质的应用问题,也考查了数形结合思想,意在考查综合应用所学知识解答问题的能力,属于基础题7、C【解析】根据三角函数图象的平移变换求解即可.【详解】由题意,为得到函数的图象,只需把函数的图象上所有的点向左平移个单位长度即可.故选:C8、C【解析】讨论两种情况,利用排除法可得结果.【详解】和是异面直线时,选项A、B不成立,排除A、B;和平行时,选项D不成立,排除D,故选C.【点睛】本题主要考查空间线面关系的判断,考查了空间想象能力以及排除法的应用,属于基础题.9、D【解析】由题意结合对数的运算法则确定的值即可.【详解】由题意可得:,则本题选择D选项.【点睛】本题主要考查指数对数互化,对数的运算法则等知识,意在考查学生的转化能力和计算求解能力.10、C【解析】利用零点存在定理进行求解.【详解】因为单调递增,且;因为,所以区间内必有一个零点;故选:C.【点睛】本题主要考查零点所在区间的判断,判断的依据是零点存在定理,侧重考查数学运算的核心素养.11、D【解析】利用线线,线面,面面的位置关系,以及垂直,平行的判断和性质判断选项.【详解】A.若,则或异面,故A不正确;B.缺少垂直于交线这个条件,不能推出,故B不正确;C.由垂直关系可知,或相交,或是异面,故C不正确;D.因为,所以平面内存在直线,若,则,且,所以,故D正确.故选:D12、A【解析】根据角的范围可知,;利用同角三角函数的平方关系和商数关系构造方程可求得结果.【详解】由可知:,由得:本题正确选项:【点睛】本题考查同角三角函数值的求解,关键是能够熟练掌握同角三角函数的平方关系和商数关系,易错点是忽略角的范围造成函数值符号错误.二、填空题(本大题共4小题,共20分)13、-6【解析】先根据约束条件画出可行域,再利用的几何意义求最值,只需求出直线过可行域内的点时,从而得到的最小值即可【详解】解:由得,作出不等式组对应的平面区域如图(阴影部分ABC):平移直线,由图象可知当直线,过点A时,直线截距最大,此时z最小,由得,即,代入目标函数,得∴目标函数的最小值是﹣6故答案为:【点睛】本题考查简单线性规划问题,属中档题14、6【解析】由可知,要使取最小值,只需最小即可,故结合,求出的最小值即可求解.【详解】由,,得(当且仅当时,等号成立),又因,得,即,由,,解得,即,故.因此当时,取最小值6.故答案为:6.15、.【解析】根据含有一个量词的命题的否定可得结果【详解】由含有一个量词的命题的否定可得,命题“”的否定为“”故答案为【点睛】对于含有量词的命题的否定要注意两点:一是要改换量词,把特称(全称)量词改为全称(特称)量词;二是把命题进行否定.本题考查特称命题的否定,属于简单题16、3【解析】令f(x)=0求解即可.【详解】,方程有三个解,故f(x)有三个零点.故答案为:3.三、解答题(本大题共6小题,共70分)17、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题18、(1);(2).【解析】(1)求出的值,利用诱导公式结合弦化切可求得结果;(2)在代数式上除以,再结合弦化切可求得结果.【小问1详解】解:因为,则,原式【小问2详解】解:原式.19、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.20、(1),,;(2)5.【解析】(1)根据自变量的范围选择相应的解析式可求得结果;(2)按照三种情况,,,选择相应的解析式代入解方程可得结果.【详解】(1),,,则;(2)当时,,解得(舍),当时,,则(舍),当时,,则,所以a的值为5.【点睛】方法点睛:(1)计算分段函数函数值时,要根据自变量的不同取值范围选取相应的解析式计算.;(2)已知函数值求自变量的值时,要根据自变量的不同取值范围进行分类讨论,从而正确求出自变量的值.21、(1)(2)【解析】(1)先求出集合,再按照并集和补集计算即可;(2)先求出,再由求出a取值范围即可.【小问1详解】,,;【小问2详解】,由题得故.22、(1),(2)左,,,2,上,1【解析】(1)根据降幂公式、二倍角的正弦公式及两角和的正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年版中国苜蓿草行业市场需求量预测及投资规模分析报告
- 2024-2030年版中国便携式气体检测仪行业前景预测及投资策略分析报告
- 2024-2030年液体化妆品灌装机行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年新版中国银刚绒项目可行性研究报告
- 2024-2030年新版中国永磁钡铁氧体项目可行性研究报告
- 2024-2030年新版中国太阳能LED花园灯项目可行性研究报告
- 2024年快运公司居间业务合同
- 2024-2030年全球及中国阻燃纤维行业发展态势及供需前景预测报告
- 2024-2030年全球及中国酿造系统行业发展动态及应用前景预测报告
- 2024-2030年全球及中国薄荷酒杯行业销售策略及盈利前景预测报告
- 企业团委书记竞聘演讲稿课件
- 口腔材料学知识点
- 绿色施工安全防护措施费用使用计划报审表
- 化学品安全技术说明书 MSDS(甲胺)
- 锚喷支护施工质量验收评定表(2022版)
- 2022年泰安技师学院教师招聘笔试题库及答案解析
- 小学生心理健康教育课《身体红绿灯》教案(公开课)
- JOINT VENTURE AGREEMENT合资企业协议(双语版)
- 人教版九年级下册道德与法治全册教案完整版教学设计含教学反思
- 三元地理些子法
- 电梯保养年度作业计划表格
评论
0/150
提交评论