版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省定远县炉桥中学数学高一上期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,φ∈R).则“f(x)是偶函数“是“A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件2.下列函数中,最小值是的是()A. B.C. D.3.已知函数,则下列是函数图象的对称中心的坐标的是()A. B.C. D.4.已知,则的最小值是()A.5 B.6C.7 D.85.已知角终边上A点的坐标为,则()A.330 B.300C.120 D.606.设函数则A.1 B.4C.5 D.97.已知偶函数的定义域为且,,则函数的零点个数为()A. B.C. D.8.由直线上的点向圆作切线,则切线长的最小值为()A.1 B.C. D.39.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x410.今有一组实验数据如下:x23456y1.52.012.985.028.98现准备用下列函数中的一个近似地表示这些数据所满足的规律,其中最接近的一个是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.若函数的图象过点,则函数的图象一定经过点________.12.设函数的定义域为D,若存在实数,使得对于任意,都有,则称为“T—单调增函数”对于“T—单调增函数”,有以下四个结论:①“T—单调增函数”一定在D上单调递增;②“T—单调增函数”一定是“—单调增函数”(其中,且):③函数是“T—单调增函数”(其中表示不大于x的最大整数);④函数不“T—单调增函数”其中,所有正确的结论序号是______13.设函数f(x)的定义域为R,f(x+1)为奇函数,f(x+2)为偶函数,当x∈[1,2]时,f(x)=ax2+b.若f(0)+f(3)=6,则f()=____________.14.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围15.已知函数,若,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知向量,(1)若,求的值;(2)若,,求的值域17.已知函数为奇函数,且(1)求a和的值;(2)若,求的值18.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;(2)若函数(且)在上有最小值﹣2,最大值7,求a的值19.已知函数在上的最大值与最小值之和为(1)求实数的值;(2)对于任意的,不等式恒成立,求实数的取值范围20.求值:(1)(2)2log310+log30.8121.已知二次函数满足条件和,(1)求;(2)求在区间()上的最小值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】利用必要不充分条件的概念,结合三角函数知识可得答案.【详解】若φ=π2,则f(x)=Asin(ωx+π若f(x)=Asin(ωx+φ)为偶函数,则φ=kπ+π2,k∈Z,所以“f(x)是偶函数“是“φ=π故选:B【点睛】关键点点睛:掌握必要不充分条件的概念是解题关键.2、B【解析】应用特殊值及基本不等式依次判断各选项的最小值是否为即可.【详解】A:当,则,,所以,故A不符合;B:由基本不等式得:(当且仅当时取等号),符合;C:当时,,不符合;D:当取负数,,则,,所以,故D不符合;故选:B.3、A【解析】根据三角函数性质计算对称中心【详解】令,则,故图象的对称中心为故选:A4、C【解析】,根据结合基本不等式即可得出答案.【详解】解:,因为,又,所以,则,当且仅当,即时,取等号,即的最小值是7.故选:C5、A【解析】根据特殊角的三角函数值求出点的坐标,再根据任意角三角函数的定义求出的值.【详解】,,即,该点在第四象限,由,,得.故选:A.6、C【解析】根据题意,由函数的解析式求出与的值,相加即可得答案【详解】根据题意,函数,则,又由,则,则;故选C【点睛】本题考查对数的运算,及函数求值问题,其中解答中熟记对数的运算,以及合理利用分段函数的解析式求解是解答的关键,着重考查了推理与计算能力,属于基础题7、D【解析】令得,作出和在上的函数图象如图所示,由图像可知和在上有个交点,∴在上有个零点,∵,均是偶函数,∴在定义域上共有个零点,故选点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等8、B【解析】先求圆心到直线的距离,此时切线长最小,由勾股定理不难求解切线长的最小值【详解】切线长的最小值是当直线上的点与圆心距离最小时取得,圆心到直线的距离为,圆的半径为1,故切线长的最小值为,故选:B【点睛】本题考查圆的切线方程,点到直线的距离,是基础题9、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.10、B【解析】根据表格中的数据,作出散点图,结合选项和函数的单调性,逐项判定,即可求解.【详解】根据表格中的数据,作出散点图,如图所示,根据散点图可知,随着的增大,的值增大,并且增长速度越来越快,结合选项:函数增长速度越来越缓慢,不符合题意;函数增长速度越来越快,符合题意;函数,增长速度不变,不符合题意;而函数,当时,可得;当时,可得,此时与真实数据误差较大,所以最接近的一个函数是.故选:B.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】函数的图象可以看作的图象先关于轴对称,再向右平移4个单位得到,先求出关于轴的对称点,再向右平移4个单位即得.【详解】由题得,函数的图象先关于轴对称,再向右平移个单位得函数,点关于轴的对称点为,向右平移4个单位是,所以函数图象一定经过点.故答案为:.【点睛】本题主要考查函数的平移变换和对称变换,考查了分析能力,属于基础题.12、②③④【解析】①③④选项可以举出反例;②可以进行证明.【详解】①例如,定义域为,存在,对于任意,都有,但在上不单调递增,①错误;②因为是单调增函数,所以存在,使得对于任意,都有,因为,,所以,故,即存在实数,使得对于任意,都有,故是单调增函数,②正确;③,定义域为,当时,对任意的,都有,即成立,所以是单调增函数,③正确;④当时,,若,则,显然不满足,故不是单调增函数,④正确.故答案为:②③④13、【解析】由f(x+1)为奇函数,f(x+2)为偶函数,可得,,再结合已知的解析式可得,然后结合已知可求出,从而可得当时,,进而是结合前面的式子可求得答案【详解】因为f(x+1)为奇函数,所以的图象关于点对称,所以,且因为f(x+2)为偶函数,所以的图象关于直线对称,,所以,即,所以,即,当x∈[1,2]时,f(x)=ax2+b,则,因为,所以,得,因为,所以,所以当时,,所以,故答案为:14、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或15、0【解析】由,即可求出结果.【详解】由知,则,又因为,所以.故答案:0.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)【解析】(1)根据的坐标关系,得到,再代入即可求值.(2)用正弦、余弦,二倍角公式和辅助角公式化简,得到,根据,求出的值域.详解】(1)若,则,∴.∴.(2),∵,∴,∴,∴,∴的值域为【点睛】本题第一问主要考查向量平行的坐标表示和正切二倍角公式,考查计算能力.第二问主要考查正弦,余弦的二倍角公式和辅助角公式以及三角函数的值域问题,属于中档题.17、(1)(2)【解析】(1)由可得答案;(2)利用二倍角公式和诱导公式化简可得,由,可得、,再利用两角差的正弦公式可得答案.【小问1详解】得,解得,经检验,为奇函数,即.【小问2详解】所以,则因为,所以,所以18、(1)(2)或【解析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解】,令,则①当时,,因,所以,解得因为,所以,解得或(舍去)②当时,,因为,所以,解得,解得或(舍去)综上,a的值为或19、(1);(2)【解析】(1)根据指对数函数的单调性得函数在上是单调函数,进而得,解方程得;(2)根据题意,将问题转化为对于任意的,恒成立,进而求函数的最值即可.【详解】解:(1)因为函数在上的单调性相同,所以函数在上是单调函数,所以函数在上的最大值与最小值之和为,所以,解得和(舍)所以实数的值为.(2)由(1)得,因为对于任意的,不等式恒成立,所以对于任意的,恒成立,当时,为单调递增函数,所以,所以,即所以实数的取值范围【点睛】本题考查指对数函数的性质,不等式恒成立求参数范围,考查运算求解能力,回归转化思想,是中档题.本题第二问解题的关键在于根据题意,将问题转化为任意的,恒成立求解.20、(1)(2)4【解析】(1)利用分数指数幂的性质运算即可;(2)利用对数的运算性质计算可得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 志愿者工作协议
- 招标文件封面的设计理念
- 授权代收款项合同模板
- 尽职调查法律纠纷预防合同
- 电梯井道工程招标
- 喷头购销合同协议
- 医院电采暖设备招标
- 房屋过户买卖合同范本样式
- 波纹管采购协议书
- 工业品购买合同格式示例
- 上海交通大学医学院博士英文复试模板
- 建筑施工合同钻孔引孔
- DZ∕T 0338.3-2020 固体矿产资源量估算规程 第3部分 地质统计学法(正式版)
- 职业病防治培训考试试题及答案
- 重症患者的人文关怀
- 西方近现代建筑史智慧树知到期末考试答案2024年
- 中职学前教育实训项目设计方案
- MOOC 国际私法-暨南大学 中国大学慕课答案
- 2023年杭州市公安局上城区分局警务辅助人员招聘考试真题及答案
- 考研经验课件
- 《客舱安全与应急处置》-课件:应急撤离的原因和原则
评论
0/150
提交评论