2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题含解析_第1页
2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题含解析_第2页
2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题含解析_第3页
2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题含解析_第4页
2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年云南省广南县第三中学校高一数学第一学期期末监测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.“学生甲在河北省”是“学生甲在沧州市”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件2.某工厂生产的30个零件编号为01,02,…,19,30,现利用如下随机数表从中抽取5个进行检测.若从表中第1行第5列的数字开始,从左往右依次读取数字,则抽取的第5个零件编号为()3457078636046896082323457889078442125331253007328632211834297864540732524206443812234356773578905642A. B.C. D.3.“ω=2”是“π为函数的最小正周期”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件4.设且则A. B.C. D.5.已知,,,则a,b,c的大小关系是()A. B.C. D.6.函数的值域是A. B.C. D.7.图1是南北方向、水平放置的圭表(一种度量日影长的天文仪器,由“圭”和“表”两个部件组成)示意图,其中表高为h,日影长为l.图2是地球轴截面的示意图,虚线表示点A处的水平面.已知某测绘兴趣小组在冬至日正午时刻(太阳直射点的纬度为南纬)在某地利用一表高为的圭表按图1方式放置后,测得日影长为,则该地的纬度约为北纬()(参考数据:,)A. B.C. D.8.若函数的图像向左平移个单位得到的图像,则A. B.C. D.9.已知函数的图象上关于轴对称的点至少有3对,则实数的取值范围是A. B.C. D.10.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.100二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.函数,的图象恒过定点P,则P点的坐标是_____.12.如图,二面角的大小是30°,线段,与所成的角为45°,则与平面所成角的正弦值是__________13.已知函数,那么的表达式是___________.14.已知向量,,,,则与夹角的余弦值为______15.已知函数定义域是________(结果用集合表示)三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知圆外有一点,过点作直线(1)当直线与圆相切时,求直线的方程;(2)当直线的倾斜角为时,求直线被圆所截得的弦长17.(1)计算:;(2)已知,,求,的值.18.若=,是第四象限角,求的值.19.已知,(1)求的值;(2)求的值20.已知函数,(1)若函数在区间上存在零点,求正实数的取值范围;(2)若,,使得成立,求正实数的取值范围21.设函数且是奇函数求常数k值;若,试判断函数的单调性,并加以证明;若已知,且函数在区间上的最小值为,求实数m的值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、B【解析】直接利用充分条件与必要条件的定义判断即可.【详解】因为若“学生甲在沧州市”则“学生甲一定在河北省”,必要性成立;若“学生甲在河北省”则“学生甲不一定在沧州市”,充分性不成立,所以“学生甲在河北省”是“学生甲在沧州市”的必要不充分条件,故选:B2、C【解析】根据随机数表依次进行选取即可【详解】解:根据随机数的定义,1行的第5列数字开始由左向右依次选取两个数字,大于30的数字舍去,重复的舍去,取到数字依次为07,04,08,23,12,则抽取的第5个零件编号为12.故选:【点睛】本题考查简单随机抽样的应用,同时考查对随机数表法的理解和辨析3、A【解析】直接利用正弦型函数的性质的应用,充分条件和必要条件的应用判断A、B、C、D的结论【详解】解:当“ω=2”时,“函数f(x)=sin(2x﹣)的最小正周期为π”当函数f(x)=sin(ωx﹣)的最小正周期为π”,故ω=±2,故“ω=2”是“π为函数的最小正周期”的充分不必要条件;故选:A4、C【解析】由已知得,,去分母得,,所以,又因为,,所以,即,选考点:同角间的三角函数关系,两角和与差的正弦公式5、B【解析】根据指数函数的单调性分析出的范围,根据对数函数的单调性分析出的范围,结合中间值,即可判断出的大小关系.【详解】因为在上单调递减,所以,所以,又因为且在上单调递增,所以,所以,又因为在上单调递减,所以,所以,综上可知:,故选:B.【点睛】方法点睛:常见的比较大小的方法:(1)作差法:作差与作比较;(2)作商法:作商与作比较(注意正负);(3)函数单调性法:根据函数单调性比较大小;(4)中间值法:取中间值进行大小比较.6、A【解析】由,知,解得令,则.,即为和两函数图象有交点,作出函数图象,如图所示:由图可知,当直线和半圆相切时最小,当直线过点A(4,0)时,最大.当直线和半圆相切时,,解得,由图可知.当直线过点A(4,0)时,,解得.所以,即.故选A.7、B【解析】由题意有,可得,从而可得【详解】由图1可得,又,所以,所以,所以,该地的纬度约为北纬,故选:8、A【解析】函数的图象向左平移个单位,得到的图象对应的函数为:本题选择A选项.9、D【解析】本题首先可以求出函数关于轴对称的函数的解析式,然后根据题意得出函数与函数的图像至少有3个交点,最后根据图像计算得出结果【详解】若,则,因为时,,所以,所以若关于轴对称,则有,即,设,画出函数的图像,结合函数的单调性和函数图像的凹凸性可知对数函数与三角函数在点处相交为临界情况,即要使与的图像至少有3个交点,需要且满足,即,解得,故选D【点睛】本题考查的是函数的对称性、对数函数以及三角函数的相关性质,主要考查如何根据函数对称性来求出函数解析式,考查学生对对数函数以及三角函数的图像的理解,考查推理能力,考查数形结合思想,是难题10、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】令,解得,且恒成立,所以函数的图象恒过定点;故填.12、【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D.连结AD,由CD⊥l,AC⊥l得,l⊥面ACD,可得AD⊥l,因此,∠ADC为二面角α−l−β的平面角,∠ADC=30°又∵AB与l所成角为45°,∴∠ABD=45°连结BC,可得BC为AB在平面β内的射影,∴∠ABC为AB与平面β所成的角设AD=2x,则Rt△ACD中,AC=ADsin30°=x,Rt△ABD中,∴Rt△ABC中,故答案为.点睛:求直线和平面所成角的关键是作出这个平面的垂线进而斜线和射影所成角即为所求,有时当垂线较为难找时也可以借助于三棱锥的等体积法求得垂线长,进而用垂线长比上斜线长可求得所成角的正弦值,当空间关系较为复杂时也可以建立空间直角坐标系,利用向量求解.13、【解析】先用换元法求出,进而求出的表达式.【详解】,令,则,故,故,故答案为:14、【解析】运用平面向量的夹角公式可解决此问题.【详解】根据题意得,,,,故答案为.【点睛】本题考查平面向量夹角公式的简单应用.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求).15、【解析】根据对数函数的真数大于0求解即可.【详解】函数有意义,则,解得,所以函数的定义域为,故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)或(2)【解析】(1)根据题意分斜率不存在和斜率存在两种情况即可求得结果;(2)先求出直线方程,然后求得圆心与直线距离,由弦长公式即可得出答案.【详解】解:(1)由题意可得,直线与圆相切当斜率不存在时,直线的方程为,满足题意当斜率存在时,设直线的方程为,即∴,解得∴直线的方程为∴直线的方程为或(2)当直线的倾斜角为时,直线的方程为圆心到直线的距离为∴弦长为【点睛】本题考查了直线的方程、直线与圆的位置关系、点到直线的距离公式及弦长公式,培养了学生分析问题与解决问题的能力.17、(1);(2)【解析】(1)根据指数运算与对数运算的法则计算即可;(2)先根据指对数运算得,进而,再将其转化为求解即可.【详解】解:(1)原式==(2)∴,,化为:,,解得∴18、【解析】先计算正弦与正切,利用诱导公式化简可得【详解】若=,是第四象限角,则原式=.19、(1);(2).【解析】(1)先根据的值和二者的平方关系联立求得的值,再把平方即可求出;(2)结合(1)求,的值,最后利用商数关系求得的值,代入即可得解【详解】(1)∵,∴,∴,∵,∴,,,∴,∴.(2)由,,解得,,∴∵,,∴【点睛】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).20、(1)(2)【解析】(1)结合函数的单调性及零点存在定理可得结论;(2)由题意可得在,上,,由函数的单调性求得最值,解不等式可得所求范围【小问1详解】函数,因为在区间上单调递减,又,所以在区间上单调递减,所以在区间上单调递减,若在区间上存在零点,则.【小问2详解】存在,,,使得成立,等价为在,上,由在,递增,可得的最小值为,又,所以在,递减,可得的最大值为,由,解得,所以;综上可得,的范围是21、(1);(2)在上为单调增函数;(3)【解析】(1)根据奇函数的定义,恒成立,可得值,也可用奇函数的必要条件求出值,然后用奇函数定义检验;(2)判断单调性,一般由单调性定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论