2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题含解析_第1页
2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题含解析_第2页
2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题含解析_第3页
2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题含解析_第4页
2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年新疆哈密石油高中高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.是边AB上的中点,记,,则向量A. B.C. D.2.如图,在中,已知为上一点,且满足,则实数的值为A. B.C. D.3.玉雕在我国历史悠久,拥有深厚的文化底蕴,数千年来始终以其独特的内涵与魅力深深吸引着世人.玉雕壁画是采用传统的手工雕刻工艺,加工生产成的玉雕工艺画.某扇形玉雕壁画尺寸(单位:)如图所示,则该壁画的扇面面积约为()A. B.C. D.4.已知是定义在上的减函数,若对于任意,均有,,则不等式的解集为()A. B.C. D.5.设集合,则()A.{1,3} B.{3,5}C.{5,7} D.{1,7}6.定义在R上的偶函数满足:对任意的,有,且,则不等式的解集是()A. B.C. D.7.已知函数则的值为()A. B.0C.1 D.28.已知函数的图像关于直线对称,且对任意,,有,则使得成立的x的取值范围是()A. B.C. D.9.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.610.焦点在y轴上,焦距等于4,离心率等于的椭圆的标准方程是A. B.C. D.11.已知函数(其中为自然对数的底数,…),若实数满足,则()A. B.C. D.12.圆:与圆:的位置关系是A.相交 B.相离C.外切 D.内切二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.设角的顶点与坐标原点重合,始变与轴的非负半轴重合,若角的终边上一点的坐标为,则的值为__________14.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________15.学校某研究性学习小组在对学生上课注意力集中情况的调查研究中,发现其在40分钟的一节课中,注意力指数与听课时间(单位:分钟)之间的关系满足如图所示的图象,当时,图象是二次函数图象的一部分,其中顶点,过点;当时,图象是线段BC,其中.根据专家研究,当注意力指数大于62时,学习效果最佳.要使得学生学习效果最佳,则教师安排核心内容的时间段为____________.(写成区间形式)16.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,.(1)求的最小正周期;(2)当时,求:(ⅰ)的单调递减区间;(ⅱ)的最大值、最小值,并分别求出使该函数取得最大值、最小值时的自变量的值.18.已知函数(其中),函数(其中).(1)若且函数存在零点,求的取值范围;(2)若是偶函数且函数的图象与函数的图象只有一个公共点,求实数的取值范围.19.已知函数.(1)求的值;(2)设,求的值.20.已知函数求函数的最小正周期与对称中心;求函数的单调递增区间21.已知函数,.(1)求函数图形的对称轴;(2)若,不等式的解集为,,求实数的取值范围.22.已知函数为偶函数.(1)求的值;(2)求的最小值;(3)若对恒成立,求实数的取值范围.

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】由题意得,∴.选C2、B【解析】所以,所以。故选B。3、D【解析】利用扇形的面积公式,利用大扇形面积减去小扇形面积即可.【详解】如图,设,,由弧长公式可得解得,,设扇形,扇形的面积分别为,则该壁画的扇面面积约为.故选:.4、D【解析】根据已知等式,结合函数的单调性进行求解即可.【详解】令时,,由,因为是定义在上的减函数,所以有,故选:D5、B【解析】先求出集合B,再求两集合的交集【详解】由,得,解得,所以,因为所以故选:B6、C【解析】依题意可得在上单调递减,根据偶函数的性质可得在上单调递增,再根据,即可得到的大致图像,结合图像分类讨论,即可求出不等式的解集;【详解】解:因为函数满足对任意的,有,即在上单调递减,又是定义在R上的偶函数,所以在上单调递增,又,所以,函数的大致图像可如下所示:所以当时,当或时,则不等式等价于或,解得或,即原不等式的解集为;故选:C7、C【解析】将代入分段函数解析式即可求解.【详解】解:因为,所以,又,所以,故选:C.8、A【解析】解有关抽象函数的不等式考虑函数的单调性,根据已知可得在单调递增,再由与的图象关系结合已知,可得为偶函数,化为自变量关系,求解即可.【详解】设,在增函数,函数的图象是由的图象向右平移2个单位得到,且函数的图像关于直线对称,所以的图象关于轴对称,即为偶函数,等价于,的取值范围是.故选:A.【点睛】本题考查函数的单调性、奇偶性、解不等式问题,注意函数图象间的平移变换,考查逻辑推理能力,属于中档题.9、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用10、C【解析】设椭圆方程为:,由题意可得:,解得:,则椭圆的标准方程为:.本题选择D选项11、B【解析】化简得到,得到,进而得到,即可求解.【详解】由题意,函数,可得,可得,即,因为,所以.故选:B.12、A【解析】求出两圆的圆心和半径,用圆心距与半径和、差作比较,得出结论.【详解】圆的圆心为(1,0),半径为1,圆的圆心为(0,2),半径为2,故两圆圆心距为,两半径之和为3,两半径之差为1,其中,故两圆相交,故选:A.【点睛】本题主要考查两圆的位置关系,需要学生熟悉两圆位置的五种情形及其判定方法,属于基础题.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】14、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.15、【解析】当,时,设,把点代入能求出解析式;当,时,设,把点、代入能求出解析式,结合题设条件,列出不等式组,即可求解.详解】当x∈(0,12]时,设,过点(12,78)代入得,a则f(x),当x∈(12,40]时,设y=kx+b,过点B(12,78)、C(40,50)得,即,由题意得,或得4<x≤12或12<x<28,所以4<x<28,则老师就在x∈(4,28)时段内安排核心内容,能使得学生学习效果最佳,故答案为:(4,28)【点睛】本题考查解析式的求法,考查不等式组的解法,解题时要认真审题,注意待定系数法的合理运用,属于中档题16、36【解析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【详解】解:依题意、cm,所以,即cm,所以;故答案为:三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)(2)(ⅰ)(ⅱ)的最大值为,此时;的最小值为,此时【解析】(1)先用三角恒等变换化简得到,利用最小正周期公式求出答案;(2)在第一问的基础上,整体法求解函数单调区间,根据单调区间求解最值,及相应的自变量的值.【小问1详解】,,的最小正周期为【小问2详解】(ⅰ),,,的单调递减区间是,且由,得,所以函数的单调递减区间为(ⅱ)由(1)知,在上单调递减,在上单调递增.且,,,所以,当时,取最大值为;当时,取最小值为18、(1);(2)或.【解析】(1)根据题意,分离参数且利用对数型复合函数的单调性求得的值域,即可求得参数的取值范围;(2)根据是偶函数求得参数,再根据题意,求解指数方程即可求得的取值范围.【小问1详解】由题意知函数存零点,即有解.又,易知在上是减函数,又,,即,所以,所以的取值范围是.【小问2详解】的定义域为,若是偶函数,则,即解得.此时,,所以即为偶函数.又因为函数与的图象有且只有一个公共点,故方程只有一解,即方程有且只有一个实根令,则方程有且只有一个正根①当时,,不合题意,②当时,方程有两相等正根,则,且,解得,满足题意;③若一个正根和一个负根,则,即时,满足题意,综上所述:实数的取值范围为或.【点睛】本题考察利用函数奇偶性求参数值,以及对数方程的求解,对数型复合函数值域的求解,解决问题的关键是熟练的掌握对数函数的性质,属综合困难题.19、(1);(2)【解析】(1)直接带入求值;(2)将和直接带入函数,会得到和的值,然后根据的值试题解析:解:(1)(2)考点:三角函数求值20、(1)最小正周期,对称中心为;(2)【解析】直接利用三角函数关系式的恒等变变换,把函数的关系式变形成正弦型函数,进一步求出函数的最小正周期和对称中心;直接利用整体思想求出函数的单调递增区间【详解】函数,,,所以函数的最小正周期为,令:,解得:,所以函数的对称中心为由于,令:,解得:,所以函数的单调递增区间为【点睛】本题主要考查了三角函数的化简,以及函数的性质,属于基础题,强调基础的重要性,是高考中的常考知识点;对于三角函数解答题21、(1);(2).【解析】(1)利用余弦的降幂扩角公式化简为标准正弦型函数,进而求解对称轴即可;(2)求得函数在区间上的值域,以及绝对值不等式的解集,根据集合之间的包含关系,即可求得参数的取值范围.【详解】(1),解得:;(2),,,又解得而,得.【点睛】本题考查利用降幂扩角公式以及辅助角公式化简三角函数,以及三角函数对称轴和值域的求解,涉及根据集合之间的关系求参数的取值范围,属综合中档题.22、(1)(2)(3)【解析】(1)运用偶函数的定义和对数的运

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论