2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题含解析_第1页
2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题含解析_第2页
2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题含解析_第3页
2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题含解析_第4页
2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江西省新余第四中学、上高第二中学高一数学第一学期期末统考模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.若是的一个内角,且,则的值为A. B.C. D.2.为空间中不重合的两条直线,为空间中不重合的两个平面,则①若;②;③;④上述说法正确的是A.①③ B.②③C.①② D.③④3.已知定义在上的奇函数满足,且当时,,则()A. B.C. D.4.已知,则函数与函数的图象可能是()A. B.C. D.5.已知两个非零向量,满足,则下面结论正确的是A. B.C. D.6.若函数在区间上单调递增,则实数k的取值范围是()A. B.C. D.7.已知函数,则函数的零点所在的区间是A. B.C. D.8.将函数的图象上所有点的横坐标缩小到原来的倍,纵坐标保持不变,得到函数的图象,若,则的最小值为()A. B.C. D.9.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心10.已知点,点在轴上且到两点的距离相等,则点的坐标为A.(-3,0,0) B.(0,-3,0)C.(0,0,3) D.(0,0,-3)11.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为米,肩宽约为米,“弓”所在圆的半径约为1.25米,则掷铁饼者双手之间的距离约为()A.1.012米 B.1.768米C.2.043米 D.2.945米12.已知函数一部分图象如图所示,如果,,,则()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知函数满足,若函数与图像的交点为,,,,,则__________14.已知,则___________.15.在半径为5的圆中,的圆心角所对的扇形的面积为_______.16.已知函数,:①函数的图象关于点对称;②函数的最小正周期是;③把函数f(2x)图象上所有点向右平移个单位长度得到的函数图象的对称轴与函数y=图象的对称轴完全相同;④函数在R上的最大值为2.则以上结论正确的序号为_______________三、解答题(本大题共6小题,共70分)17.已知函数,,(1)求的值;(2)求函数的单调递增区间;(3)求在区间上的最大值和最小值18.已知函数(,)(1)若关于的不等式的解集为,求不等式的解集;(2)若,,求关于的不等式的解集19.若集合,,.(1)求;(2)若,求实数的取值范围.20.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围21.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.22.已知直线过点,并与直线和分别交于点,若线段被点平分,求:(1)直线的方程;(2)以坐标原点为圆心且被截得的弦长为的圆的方程

参考答案一、选择题(本大题共12小题,共60分)1、D【解析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.2、A【解析】由线面垂直的性质定理知①正确;②中直线可能在平面内,故②错误;,则内一定有直线//,,则有,所以,③正确;④中可能平行,相交,异面,故④错误,故选A3、C【解析】先推导出函数的周期为,可得出,然后利用函数的奇偶性结合函数的解析式可计算出结果.【详解】函数是上的奇函数,且,,,所以,函数的周期为,则.故选:C.【点睛】本题考查利用函数的奇偶性和周期求函数值,解题的关键就是推导出函数的周期,考查计算能力,属于中等题.4、D【解析】根据对数关系得,所以函数与函数的单调性相同即可得到选项.【详解】,所以,,不为1的情况下:,函数与函数的单调性相同,ABC均不满足,D满足题意.故选:D【点睛】此题考查函数图象的辨析,根据已知条件找出等量关系或不等关系,分析出函数的单调性得解.5、B【解析】,所以,故选B考点:平面向量的垂直6、C【解析】根据函数的单调性得到关于k的不等式组,解出即可【详解】解:f(x)==1+,若f(x)在(﹣2,+∞)上单调递增,则,故k≤﹣2,故选:C7、A【解析】根据初等函数的性质得到函数的单调性,再由得答案【详解】∵函数和在上均为增函数,∴在上为单调增函数,∵,,∴函数的零点所在的区间是,故选A【点睛】本题主要考查了函数零点的判定,考查了初等函数的性质,属于基础题8、D【解析】求出g(x)解析式,作出g(x)图像,根据图像即可求解﹒【详解】由题得,,,∵,∴=1且=-1或且=1,作的图象,∴的最小值为=,故选:D9、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.10、D【解析】设点,根据点到两点距离相等,列出方程,即可求解.【详解】根据题意,可设点,因为点到两点的距离相等,可得,即,解得,所以整理得点的坐标为.故选:D.11、B【解析】由题分析出这段弓所在弧长,结合弧长公式求出其所对圆心角,双手之间的距离为其所对弦长【详解】解:由题得:弓所在的弧长为:;所以其所对的圆心角;两手之间的距离故选:B12、C【解析】先根据函数的最大值和最小值求得和,然后利用图象求得函数的周期,求得,最后根据时取最大值,求得【详解】解:如图根据函数的最大值和最小值得求得函数的周期为,即当时取最大值,即故选C【点睛】本题主要考查了由的部分图象确定其解析式.考查了学生基础知识的运用和图象观察能力二、填空题(本大题共4小题,共20分)13、4【解析】函数f(x)(x∈R)满足,∴f(x)的图象关于点(1,0)对称,而函数的图象也关于点(1,0)对称,∴函数与图像的交点也关于点(1,0)对称,∴,∴故答案为:4点睛:本题考查函数零点问题.函数零点问题有两种解决方法,一个是利用二分法求解,另一个是化原函数为两个函数,利用两个函数的交点来求解.本题要充分注意到两个函数的共性:关于同一点中心对称.14、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:15、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.16、②③④【解析】利用辅助角公式、二倍角公式化简函数、,再逐一分析各个命题,计算判断作答.【详解】依题意,函数,因,函数的图象关于点不对称,①不正确;,于是得的最小正周期是,②正确;,则把函数f(2x)图象上所有点向右平移个单位长度得到的函数,函数图象的对称轴与函数y=图象的对称轴完全相同,③正确;令,则,,当时,,所以函数在R上的最大值为2,④正确,所以结论正确的序号为②③④.故答案为:②③④【点睛】思路点睛:涉及求含有和的三角函数值域或最值问题,可以通过换元转化为二次函数在闭区间上的值域或最值问题解答.三、解答题(本大题共6小题,共70分)17、(1)1;(2)(3)最大值为2,最小值为-1.【解析】(1)直接利用函数的关系式求出函数的值;(2)利用整体代换发即可求出函数的单调增区间;(3)结合(2),利用函数的定义域求出函数的单调性,进而即可求出函数的最大、小值.【小问1详解】由,得;【小问2详解】令,整理,得,故函数的单调递增区间为;【小问3详解】由,得,结合(2)可知,函数的单调递增区间为,所以函数在上单调递增,在上单调递减,故当时,函数取得最小值,且最小值为,当时,函数取得最大值,且最大值为.18、(1)(2)当时,不等式的解集为;当时,不等式的解集为;当时,不等式的解集为【解析】(1)根据题意可得,且,3是方程的两个实数根,利用韦达定理得到方程组,求出,,进一步可得不等式等价于,即,最后求解不等式即可;(2)当时,时,不等式等价于,从而分类讨论,,三种情况即可求出不等式所对应的解集【小问1详解】解:的不等式的解集为,,且,3是方程的两个实数根,,,解得,,不等式等价于,即,故,解得或,所以该不等式的解集为;【小问2详解】解:当时,不等式等价于,即,又,所以不等式等价于,当,即时,不等式为,解得;当,即时,解不等式得或;当,即时,解不等式得或,综上,当时,不等式的解集为,当时,不等式的解集为,当时,不等式的解集为19、(1);(2).【解析】(1)解不等式求出集合,再进行交集运算即可求解;(2)解不等式求集合,根据并集的结果列不等式即可求解.【详解】(1),,;(2),或,,.即实数的取值范围为.20、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解】因为对任意,均存在,使得成立等价于,,.而当时,,故必有由第(2)小题可知,,且,所以,①当时,∴,可得,②当时,∴,可得,③当时,∴或,可得,综上所述,实数的取值范围为21、(1)条件选择见解析,(2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(2)用正弦定理得表示出,,得到,利用三角函数求出的取值范围.【小问1详解】若选①,则由正弦定理得,因为,所以,所以,所以,又因为,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论