2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题含解析_第1页
2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题含解析_第2页
2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题含解析_第3页
2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题含解析_第4页
2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省无锡市洛社初级中学数学高一上期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,共60分)1.下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.已知函数,是函数的一个零点,且是其图象的一条对称轴.若是的一个单调区间,则的最大值为A.18 B.17C.15 D.133.设函数,则使成立的的取值范围是A. B.C. D.4.函数的图象大致是()A. B.C. D.5.用二分法求方程的近似解时,可以取的一个区间是()A. B.C. D.6.已知扇形的圆心角为,半径为10,则扇形的弧长为()A. B.1C.2 D.47.已知则的值为()A. B.2C.7 D.58.如图,已知的直观图是一个直角边长是1的等腰直角三角形,那么的面积是A. B.C.1 D.9.已知函数,且,则A. B.0C. D.310.我国东汉数学家赵爽在《周髀算经》中利用一副“弦图”给出了勾股定理的证明,后人称其为“赵爽弦图”,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形,如图所示,在“赵爽弦图”中,若,,,则()A. B.C. D.11.定义域为的函数满足,当时,,若时,对任意的都有成立,则实数的取值范围是()A. B.C. D.12.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.二、填空题(本大题共4小题,共20分)13.直线与直线的距离是__________14.已知圆C:(x﹣2)2+(y﹣1)2=10与直线l:2x+y=0,则圆C与直线l的位置关系是_____15.已知是偶函数,且方程有五个解,则这五个解之和为______16.已知函数,若存在,使得,则的取值范围为_____________.三、解答题(本大题共6小题,共70分)17.已知函数的图象过点(1)求的值并求函数的值域;(2)若关于的方程有实根,求实数的取值范围;(3)若为偶函数,求实数的值18.已知函数f(x)=sinωx-cosωx(ω>0)的最小正周期为π.(1)求函数y=f(x)图象对称轴方程;(2)讨论函数f(x)在上的单调性.19.(1)计算:;(2)计算:20.设函数.(1)若在区间上的最大值为,求的取值范围;(2)若在区间上有零点,求的最小值.21.某校对100名高一学生的某次数学测试成绩进行统计,分成五组,得到如图所示频率分布直方图.(1)求图中a值;(2)估计该校高一学生这次数学成绩的众数和平均数;(3)估计该校高一学生这次数学成绩的75%分位数.22.已知函数(Ⅰ)求函数的最小正周期(Ⅱ)求函数在上的最大值与最小值

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】分析】利用不等式性质逐一判断即可.【详解】选项A中,若,,则,若,,则,故错误;选项B中,取,满足,但,故错误;选项C中,若,则两边平方即得,故正确;选项D中,取,满足,但,故错误.故选:C.【点睛】本题考查了利用不等式性质判断大小,属于基础题.2、D【解析】由已知可得,结合,得到(),再由是的一个单调区间,可得T,即,进一步得到,然后对逐一取值,分类求解得答案【详解】由题意,得,∴,又,∴()∵是一个单调区间,∴T,即,∵,∴,即①当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;②当,即时,,,∴,,∵,∴,此时在上不单调,∴不符合题意;③当,即时,,,∴,∵,∴,此时在上单调递增,∴符合题意,故选D【点睛】本题主要考查正弦型函数的单调性,对周期的影响,零点与对称轴之间的距离与周期的关系,考查分类讨论的数学思想方法,考查逻辑思维能力与推理运算能力,结合选项逐步对系数进行讨论是解决该题的关键,属于中档题.3、A【解析】,定义域为,∵,∴函数为偶函数,当时,函数单调递增,根据偶函数性质可知:得成立,∴,∴,∴的范围为故答案为A.考点:抽象函数的不等式.【思路点晴】本题考查了偶函数的性质和利用偶函数图象的特点解决实际问题,属于基础题型,应牢记.根据函数的表达式可知函数为偶函数,根据初等函数的性质判断函数在大于零的单调性为递增,根据偶函数关于原点对称可知,距离原点越远的点,函数值越大,把可转化为,解绝对值不等式即可4、B【解析】根据题意,先分析函数的奇偶性,排除AC,再判断函数在上的符号,排除D,即可得答案【详解】∵f(x)定义域[-1,1]关于原点对称,且,∴f(x)为偶函数,图像关于y轴对称,故AC不符题意;在区间上,,,则有,故D不符题意,B正确.故选:B5、B【解析】构造函数并判断其单调性,借助零点存在性定理即可得解.【详解】,令,在上单调递增,并且图象连续,,,在区间内有零点,所以可以取的一个区间是.故选:B6、D【解析】由扇形的弧长公式运算可得解.【详解】解:因为扇形的圆心角为,半径为10,所以由弧长公式得:扇形的弧长为故选:D7、B【解析】先算,再求【详解】,故选:B8、D【解析】根据斜二测画法的基本原理,将平面直观图与还原为原几何图形,利用三角形面积公式可得结果.【详解】平面直观图与其原图形如图,直观图是直角边长为的等腰直角三角形,还原回原图形后,边还原为长度不变,仍为,直观图中的在原图形中还原为长度,且长度为,所以原图形的面积为,故选D.【点睛】本题主要考查直观图还原几何图形,属于简单题.利用斜二测画法作直观图,主要注意两点:一是与轴平行的线段仍然与与轴平行且相等;二是与轴平行的线段仍然与轴平行且长度减半.9、D【解析】分别求和,联立方程组,进行求解,即可得到答案.【详解】由题意,函数,且,,则,两式相加得且,即,,则,故选D【点睛】本题主要考查了函数值的计算,结合函数奇偶性的性质建立方程组是解决本题的关键,着重考查了运算与求解能力,属于基础题.10、C【解析】利用平面向量的线性运算及平面向量的基本定理求解即可【详解】∵∴∵∴=∴=,∴故选:C11、B【解析】由可求解出和时,的解析式,从而得到在上的最小值,从而将不等式转化为对恒成立,利用分离变量法可将问题转化为,利用二次函数单调性求得在上的最大值,从而得到,进而求得结果.【详解】当时,时,当时,,时,时,,即对恒成立即:对恒成立令,,,解得:故选:B12、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.二、填空题(本大题共4小题,共20分)13、【解析】14、相交【解析】根据题意只需判断圆心到直线的距离与半径比较大小即可判断详解】由题意有圆心,半径则圆心到直线的距离故直线与圆C相交故答案为:相交【点睛】本题主要考查直线和圆的位置关系的判断,属于基础试题15、【解析】根据函数的奇偶性和图象变换,得到函数的图象关于对称,进而得出方程其中其中一个解为,另外四个解满足,即可求解.【详解】由题意,函数是偶函数,可函数的图象关于对称,根据函数图象的变换,可得函数的图象关于对称,又由方程有五个解,则其中一个解为,不妨设另外四个解分别为且,则满足,即,所以这五个解之和为.故答案为:.16、【解析】根据条件作出函数图象求解出的范围,利用和换元法将变形为二次函数的形式,从而求解出其取值范围.【详解】由解析式得大致图象如下图所示:由图可知:当时且,则令,解得:,,又,,,令,则,,即.故答案为:【点睛】思路点睛:根据分段函数函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.三、解答题(本大题共6小题,共70分)17、(1)(2)(3)【解析】(1)函数图象过,代入计算可求出的值,结合对数函数的性质可求出函数的值域;(2)构造函数,求出它在上的值域,即可求出的取值范围;(3)利用偶函数的性质,即可求出【详解】(1)因为函数图象过点,所以,解得.则,因为,所以,所以函数的值域为.(2)方程有实根,即,有实根,构造函数,则,因为函数在R上单调递减,而在(0,)上单调递增,所以复合函数是R上单调递减函数所以在上,最小值,最大值为,即,所以当时,方程有实根(3),是R上的偶函数,则满足,即恒成立,则恒成立,则恒成立,即恒成立,故,则恒成立,所以.【点睛】本题考查了函数的奇偶性的应用,及对数函数的性质,属于中档题18、(1);(2)单调增区间为;单调减区间为.【解析】(1)先化简得函数f(x)=sin,解不等式2x-=kπ+(k∈Z)即得函数y=f(x)图象的对称轴方程.(2)先求函数的单调递增区间为(k∈Z),再给k取值,得到函数f(x)在上的单调性.【详解】(1)∵f(x)=sinωx-cosωx=sin,且T=π,∴ω=2.于是,f(x)=sin.令2x-=kπ+(k∈Z),得x=+(k∈Z),故函数f(x)的对称轴方程为x=+(k∈Z).(2)令2kπ-≤2x-≤2kπ+(k∈Z),得函数f(x)的单调递增区间为(k∈Z).注意到x∈,令k=0,得函数f(x)在上的单调递增区间为;其单调递减区间为.【点睛】(1)本题主要考查三角函数的图像和性质,意在考查学生对这些知识的掌握说和分析推理能力.(2)一般利用复合函数的单调性原理求复合函数的单调区间,首先是对复合函数进行分解,接着是根据复合函数的单调性原理分析出分解出的函数的单调性,最后根据分解函数的单调性求出复合函数的单调区间.19、(1);(2).【解析】(1)由根式化为分数指数幂,再由幂的运算法则计算(2)利用对数的换底公式和运算法则计算【详解】(1)原式=8+0.1+1=9.1(2)原式==1+=1+2=320、(1);(2)【解析】⑴根据函数图象可得在区间上的最大值必是和其中较大者,求解即可得到的取值范围;⑵设方程的两根是,,由根与系数之间的关系转化为,对其化简原式大于或者等于,构造新函数,利用函数的最值来求解解析:(1)因为图象是开口向上的抛物线,所以在区间上的最大值必是和中较大者,而,所以只要,即,得.(2)设方程的两根是,,且,则,所以,当且仅当时取等号.设,则,由,得,因此,所以,此时,由知.所以当且时,取得最小值.点睛:本题考查了函数零点的判定定理,二次函数的性质以及解不等式,在求参量的最值时,利用根与系数之间的关系,转化为根的方程,运用函数的思想当取得对称轴时有最值,本题需要进行化归转化,难度较大21、(1)(2)众数为,平均数为(3)【解析】(1)由频率分布直方图的性质,列出方程,即可求解;可得,(2)根据频率分布直方图的中众数的概念和平均数的计算公式,即可求解;(3)因为50到80的频率和为0.65,50到90的频率和为0.9,结合百分数的计算方法,即可求解.【小问1详解】解:由频率分布直方图的性质,可得,解得.【小问2详解】解:根据频率分布直方图的中众数的概念,可得众数为,平均数为.【小问3详解】解:因为50到80的频率和为0.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论