




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省东方市琼西中学数学高一上期末经典试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列命题是全称量词命题,且是真命题的为()A.有些四边形的内角和不等于360° B.,C., D.所有能被4整除的数都是偶数2.的定义域为()A. B.C. D.3.已知定义在上的奇函数满足当时,,则关于的函数,()的所有零点之和为()A. B.C. D.4.设m,n为两条不同的直线,,为两个不同的平面,则下列结论正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则5.已知函数的图像中相邻两条对称轴之间的距离为,当时,函数取到最大值,则A.函数的最小正周期为 B.函数的图像关于对称C.函数的图像关于对称 D.函数在上单调递减6.如图,正方体中,直线与所成角大小为A. B.C. D.7.下列关系中正确个数是()①②③④A.1 B.2C.3 D.48.将函数的图象沿轴向右平移个单位后,得到的函数图象关于轴对称,则的值可以是()A. B.C. D.9.下列命题中不正确的是()A.一组数据1,2,3,3,4,5的众数大于中位数B.数据6,5,4,3,3,3,2,2,2,1的分位数为5C.若甲组数据的方差为5,乙组数据为5,6,9,10,5,则这两组数据中较稳定的是乙D.为调查学生每天平均阅读时间,某中学从在校学生中,利用分层抽样的方法抽取初中生20人,高中生10人.经调查,这20名初中生每天平均阅读时间为60分钟,这10名高中生每天平均阅读时间为90分钟,那么被抽中的30名学生每天平均阅读时间为70分钟10.已知的图象在上存在个最高点,则的范围()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.亲爱的考生,我们数学考试完整的时间是2小时,则从考试开始到结束,钟表的分针转过的弧度数为___________.12.若且,则取值范围是___________13.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.14.已知命题“,”是真命题,则实数的取值范围为__________15.设则__________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.解答题(1);(2)lg20+log1002517.在体育知识有奖问答竞赛中,甲、乙、丙三人同时回答一道有关篮球知识的问题,已知甲答题正确的概率是,乙答题错误的概率是,乙、丙两人都答题正确的概率是,假设每人答题正确与否是相互独立的(1)求丙答题正确的概率;(2)求甲、丙都答题错误,且乙答题正确的概率18.如图,在同一平面上,已知等腰直角三角形纸片的腰长为3,正方形纸片的边长为1,其中B、C、D三点在同一水平线上依次排列.把正方形纸片向左平移a个单位,.设两张纸片重叠部分的面积为S.(1)求关于a的函数解析式;(2)若,求a的值.19.指数函数(且)和对数函数(且)互为反函数,已知函数,其反函数为(1)若函数在区间上单调递减,求实数的取值范围;(2)是否存在实数使得对任意,关于的方程在区间上总有三个不等根,,?若存在,求出实数及的取值范围;若不存在,请说明理由20.已知函数的最小正周期为.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少有个零点,求的最小值.21.某单位安装1个自动污水净化设备,安装这种净水设备的成本费(单位:万元)与管线、主体装置的占地面积x(单位:平方米)成正比,比例系数为0.1,为了保证正常用水,安装后采用净水装置净水和自来水公司供水互补的用水模式.假设在此模式下,安装后该单位每年向自来水公司缴纳水费为,记y为该单位安装这种净水设备费用与安装设备后每年向自来水公司缴水费之和(1)写出y关于x的函数表达式;(2)求x为多少时,y有最小值,并求出y的最小值
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、D【解析】根据定义分析判断即可.【详解】A和C都是存在量词命题,B是全称量词命题,但其是假命题,如时,,D选项为全称命题且为真命题故选:D.2、C【解析】由对数函数的性质及分式的性质解不等式即可得解.【详解】由题意得,解得,所以的定义域为.故选:C.【点睛】本题考查了具体函数定义域的求解,属于基础题.3、B【解析】作函数与的图象,从而可得函数有5个零点,设5个零点分别为,从而结合图象解得【详解】解:作函数与的图象如下,结合图象可知,函数与的图象共有5个交点,故函数有5个零点,设5个零点分别为,∴,,,故,即,故,故选B【点睛】本题考查了函数零点与函数的图象的关系应用及数形结合的思想应用,属于常考题型.4、D【解析】根据线面的位置关系可判断A;举反例判断B、C;由面面垂直的判定定理可判断D,进而可得正确选项.详解】对于A:若,,则或,故选项A不正确;对于B:如图平面为平面,平面为平面,直线为,直线为,满足,,,但与相交,故选项B不正确;对于C:如图在正方体中,平面为平面,平面为平面,直线为,直线为,满足,,,则,故选项C不正确;对于D:若,,可得或,若,因为,由面面垂直的判定定理可得;若,可过作平面与相交,则交线在平面内,且交线与平行,由可得交线与垂直,由面面垂直的判定定理可得,故选项D正确;故选:D.5、D【解析】由相邻对称轴之间的距离,得函数的最小正周期,求得,再根据当时,函数取到最大值求得,对函数的性质进行判断,可选出正确选项【详解】因为函数的图像中相邻两条对称轴之间的距离为,所以,函数的最小正周期,所以,又因为当时,函数取到最大值,所以,,因为,所以,,函数最小正周期,A错误;函数图像的对称轴方程为,,B错误;函数图像的对称中心为,,C错误;所以选择D【点睛】由的图像求函数的解析式时,由函数的最大值和最小值求得,由函数的周期求得,代值进函数解析式可求得的值6、C【解析】连接通过线线平行将直线与所成角转化为与所成角,然后构造等边三角形求出结果【详解】连接如图就是与所成角或其补角,在正方体中,,故直线与所成角为.故选C.【点睛】本题考查了异面直线所成角的大小的求法,属于基础题,解题时要注意空间思维能力的培养.7、A【解析】根据集合的概念、数集的表示判断【详解】是有理数,是实数,不是正整数,是无理数,当然不是整数.只有①正确故选:A【点睛】本题考查元素与集合的关系,掌握常用数集的表示是解题关键8、C【解析】首先求平移后的解析式,再根据函数关于轴对称,当时,,求的值.【详解】函数的图象沿轴向右平移个单位后的解析式是,若函数图象关于轴对称,当时,,解得:,当时,.故选:C【点睛】本题考查函数图象变换,以及根据函数性质求参数的取值,意在考查基本知识,属于基础题型.9、A【解析】由中位数以及众数判断A;由百分位数的定义计算判断B;计算乙组数据的方差判断C;计算被抽中的30名学生每天平均阅读时间从而判断D.【详解】对于A,中位数为和众数相等,故A错误;对于B,将该组数据从小到大排列为,,则该组数据的分位数为5,故B正确;对于C,乙组数据,方差为,则这两组数据中较稳定的是乙,故C正确;对于D,被抽中的30名学生每天平均阅读时间为,故D正确;故选:A10、A【解析】根据题意列出周期应满足的条件,解得,代入周期计算公式即可解得的范围.【详解】由题可知,解得,则,故选:A【点睛】本题考查正弦函数图像的性质与周期,属于中档题.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】根据角的概念的推广即可直接求出答案.【详解】因为钟表的分针转了两圈,且是按顺时针方向旋转,所以钟表的分针转过的弧度数为.故答案为:.12、或【解析】分类讨论解对数不等式即可.【详解】因为,所以,当时,可得,当时,可得.所以或故答案为:或13、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.14、【解析】此题实质上是二次不等式的恒成立问题,因为,函数的图象抛物线开口向上,所以只要判别式不大于0即可【详解】解:因为命题“,”是真命题,所以不等式在上恒成立由函数的图象是一条开口向上的抛物线可知,判别式即解得所以实数的取值范围是故答案为:【点睛】本题主要考查全称命题或存在性命题的真假及应用,解题要注意的范围,如果,一定要注意数形结合;还应注意条件改为假命题,有时考虑它的否定是真命题,求出的范围.本题是一道基础题15、【解析】先求,再求的值.【详解】由分段函数可知,.故答案为:【点睛】本题考查分段函数求值,属于基础题型.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)1;(2)2.【解析】(1)利用对数的运算性质可求得原式=lg10=1;(2)同理可求得原式=2log55=2;【详解】(1)(2)lg20+log10025【点睛】本题考查对数的运算性质,熟练掌握积、商、幂的对数的运算性质是解决问题的关键,属于中档题17、(1)(2)【解析】(1)设丙答对这道题的概率为,利用对立事件和相互独立事件概率公式,即可求解;(2)由相互独立事件概率乘法公式,即可求解.【小问1详解】记甲、乙、丙3人独自答对这道题分别为事件,设丙答对题的概率,乙答对题的概率,由于每人回答问题正确与否是相互独立的,因此是相互独立事件.根据相互独立事件同时发生的概率公式,得,解得,所以丙对这道题的概率为【小问2详解】甲、丙都答题错误,且乙答题正确的概率为甲、乙、丙三人都回答错误的概率为18、(1);(2)或.【解析】(1)讨论、、分别求对应的,进而写出函数解析式的分段形式.(2)根据(1)所得解析式,将代入求a值即可.【小问1详解】如下图,延长到上的,又,则,∴,当时,;当时,;当时,.综上,.小问2详解】由(1)知:在上,;在上,,整理得,解得(舍)或.综上,或时,.19、(1);(2)存在,,.【解析】(1)利用复合函数的单调性及函数的定义域可得,即得;(2)由题可得,令,则可得时,方程有两个不等的实数根,当时方程有且仅有一个根在区间内或1,进而可得对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,再利用二次函数的性质可得,即得.【小问1详解】∵函数,其反函数为,∴,∴,又函数在区间上单调递减,又∵在定义域上单调递增,∴函数在区间上单调递减,∴,解得;【小问2详解】∵,∴,∵,,令,则时,方程有两个不等的实数根,不妨设为,则,即,∴,即方程有两个不等的实数根,且两根积为1,当时方程有且仅有一个根在区间内或1,由,可得,令,则原题目等价于对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,则必有,∴,解得,此时,则其根在区间内,所以,综上,存在,使得对任意,关于的方程在区间上总有三个不等根,,,的取值范围为.【点睛】关键点点睛:本题第二问关键是把问题转化为对于任意的关于t的方程,在区间上总有两个不等根,且有两个不等根,只有一个根,进而利用二次函数性质可求.20、(1);(2).【解析】(1)利用正余弦的倍角公式,结合辅助角公式化简为标准正弦型三角函数,根据周期求得参数,再求其单调区间即可;(2)根据函数图像的平移求得的解析式,根据零点个数,即可求得参数的范围.【详解】(1)函数最小正周期为,则,则,所以,令,解得,则函数的单调递增区间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 品牌故事讲述与传播
- 企业社会责任在支持残疾人就业中的实践
- 主题酒店中的艺术元素应用
- 企业员工激励与留任策略研究
- 婴幼儿食品安全知识资料
- 企业流程优化与管理升级
- 公司品质管理与全面质量管理实践分享
- 2025年高性能功能陶瓷结构陶瓷项目发展计划
- 无锡2025年江苏无锡市卫生健康委员会直属事业单位招聘高端类专技人才198人(长期)笔试历年参考题库附带答案详解
- 报装引电合同范本
- 东方电气公司2020年财务分析研究报告
- 薪资核算SOP-(定稿)
- 2023年四川省成都市高新区中考语文二诊试卷-普通用卷
- 《杀死一只知更鸟》读书分享PPT
- 小实验自制杆秤
- 中国糖尿病足诊治临床路径2023(最全版)
- 核医学-泌尿系统
- 酒店工程部内部管理制度
- GB/T 26358-2022旅游度假区等级划分
- GB/T 467-1997阴极铜
- 树立正确消费观(军队课件)
评论
0/150
提交评论