下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1/1人教版高三年级数学必考知识点(高中(学习(方法)))其实很简洁,但是这个方法要始终保持下去,才能在最终考试时看到成效,假如对某一科目感爱好或者有天赋异禀,那么学习成果会有明显提高,若是学习动力比较足或是受到了一些乐观的影响或刺激,分数也会大幅度上涨。我为你预备了《人教版高(三班级数学)必考学问点》,盼望助你一臂之力!
【篇一】
①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高).
②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形.
⑶特别棱锥的顶点在底面的射影位置:
①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心.
②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心.
③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心.
④棱锥的顶点究竟面各边距离相等,则顶点在底面上的射影为底面多边形内心.
⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心.
⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心.
⑦每个四周体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;
⑧每个四周体都有内切球,球心
是四周体各个二面角的平分面的交点,到各面的距离等于半径.
[注]:i.各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥.(×)(各个侧面的等腰三角形不知是否全等)
ii.若一个三角锥,两条对角线相互垂直,则第三对角线必定垂直.
简证:AB⊥CD,AC⊥BD
BC⊥AD.令得,已知则.
iii.空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形肯定是矩形.
iv.若是四边长与对角线分别相等,则顺次连结各边的中点的四边是肯定是正方形.
简证:取AC中点,则平面90°易知EFGH为平行四边形
EFGH为长方形.若对角线等,则为正方形.
【篇二】
基本领件的定义:
一次试验连同其中可能消失的每一个结果称为一个基本领件。
等可能基本领件:
若在一次试验中,每个基本领件发生的可能性都相同,则称这些基本领件为等可能基本领件。
古典概型:
假如一个随机试验满意:(1)试验中全部可能消失的基本领件只有有限个;
(2)每个基本领件的发生都是等可能的;
那么,我们称这个随机试验的概率模型为古典概型.
古典概型的概率:
假如一次试验的等可能大事有n个,考试技巧,那么,每个等可能基本领件发生的概率都是;假如某个大事A包含了其中m个等可能基本领件,那么大事A发生的概率为。
古典概型解题步骤:
(1)阅读题目,搜集信息;
(2)推断是否是等可能大事,并用字母表示大事;
(3)求出基本领件总数n和大事A所包含的结果数m;
(4)用公式求出概率并下结论。
求古典概型的概率的关键:
求古典概型的概率的关键是如何确定基本领件总数及大事A包含的基本领件的个数。
人教版高三班级数学必考学问点相关(文章):
2.高三数学必考学问点复习总结
3.高三数学学问点归纳
4.人教版高中数学学问点
5.人教版高三数学必修四学问点
6.高考数学必考重点学问大全
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二手房出租合同范文2024年
- 业务委托合同协议书样本
- 2024年集装箱出租合同书
- 讲师与教育平台合作合同
- 买卖房屋定金协议书
- 房屋租赁合同的违约责任解析
- 中小学信息技术教师应具备哪些能力与素质
- 简单卷闸门合同书样本2024年
- 2024年国际快递合作协议书
- 客户服务协议书
- 副总经理招聘面试题及回答建议(某大型国企)
- 期中测试卷(试题)-2024-2025学年统编版语文五年级上册
- 建筑工地台风过后复工复产工作方案
- 借款协议(父母借款给子女买房协议)(二篇)
- 税务师涉税服务相关法律真题2021年
- 2024年太仓市城市建设投资集团限公司公开招聘3人高频难、易错点500题模拟试题附带答案详解
- 琴行培训机构合同协议书
- 少儿趣味编程Scratch综合实战《小车巡线》教学设计
- 中国融通集团招聘笔试题库2024
- 期中测试卷(1-4单元)(试题)2024-2025学年人教版数学六年级上册
- ICU谵妄患者的护理
评论
0/150
提交评论