2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题含解析_第1页
2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题含解析_第2页
2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题含解析_第3页
2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题含解析_第4页
2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年河北省保定市阜平中学数学高一上期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12小题,共60分)1.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱2.已知偶函数f(x)在区间[0,+∞)上单调递增,则满足f(2x-1)<f的x的取值范围是()A. B.C. D.3.函数在区间(0,1)内的零点个数是A.0 B.1C.2 D.34.已知,那么()A. B.C. D.5.设,则的大小关系()A. B.C. D.6.已知是锐角,那么是()A.第一象限角 B.第二象限角C.小于180°的正角 D.第一或第二象限角7.函数()A. B.C. D.8.“”是“关于的方程有实数根”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件9.不论a取何正实数,函数恒过点()A. B.C. D.10.将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()A. B.C. D.11.函数y=xcosx+sinx在区间[–π,π]的图象大致为()A. B.C. D.12.已知函数在区间上是单调增函数,则实数的取值范围为()A. B.C. D.二、填空题(本大题共4小题,共20分)13.已知,若,使得,若的最大值为M,最小值为N,则___________.14.设函数,则____________.15.函数的定义域为_________.16.已知角的终边过点,则__________三、解答题(本大题共6小题,共70分)17.设圆的圆心在轴上,并且过两点.(1)求圆的方程;(2)设直线与圆交于两点,那么以为直径的圆能否经过原点,若能,请求出直线的方程;若不能,请说明理由.18.已知函数f(x)=(1)求f(x)的最小正周期;(2)求f(x)在区间上的最大值和最小值19.为了做好新冠疫情防控工作,某学校要求全校各班级每天利用课间操时间对各班教室进行药熏消毒.现有一种备选药物,根据测定,教室内每立方米空气中的药含量(单位:mg)随时间(单位:)的变化情况如图所示,在药物释放的过程中与成正比,药物释放完毕后,与的函数关系为(为常数),其图象经过,根据图中提供的信息,解决下面的问题.(1)求从药物释放开始,与的函数关系式;(2)据测定,当空气中每立方米的药物含量降低到mg以下时,才能保证对人身无害,若该校课间操时间为分钟,据此判断,学校能否选用这种药物用于教室消毒?请说明理由.20.已知函数,.(1)求的最小正周期;(2)求在区间上的最大值和最小值.21.已知函数.(1)若函数的定义域和值域均为,求实数的值;(2)若在区间上是减函数,且对任意的,总有,求实数的取值范围.(可能用到的不等关系参考:若,且,则有)22.已知(1)若,求的值;(2)若,且,求的值

参考答案一、选择题(本大题共12小题,共60分)1、C【解析】利用几何体的定义解题.【详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【点睛】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.2、A【解析】根据函数的奇偶性和单调性,将不等式进行等价转化,求解即可.【详解】∵f(x)为偶函数,∴f(x)=f(|x|).则f(|2x-1|)<f.又∵f(x)在[0,+∞)上单调递增,∴|2x-1|<,解得<x<.故选:.【点睛】本题考查利用函数奇偶性和单调性解不等式,属综合基础题.3、B【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点4、C【解析】运用诱导公式即可化简求值得解【详解】,可得,那么故选:C5、C【解析】判断与大小关系,即可得到答案.【详解】因为,,,所以.故选:C.【点睛】本题主要考查对数函数、指数函数的性质,关键是与中间量进行比较,然后得三个数的大小关系,属于基础题.6、C【解析】由题知,故,进而得答案.【详解】因为是锐角,所以,所以,满足小于180°的正角.其中D选项不包括,故错误.故选:C7、A【解析】由于函数为偶函数又过(0,0),排除B,C,D,所以直接选A.【考点定位】对图像的考查其实是对性质的考查,注意函数的特征即可,属于简单题.8、A【解析】根据给定条件利用充分条件、必要条件的定义直接判断作答.【详解】当时,方程的实数根为,当时,方程有实数根,则,解得,则有且,因此,关于的方程有实数根等价于,所以“”是“关于的方程有实数根”的充分而不必要条件.故选:A9、A【解析】令指数为0,即可求得函数恒过点【详解】令x+1=0,可得x=-1,则∴不论取何正实数,函数恒过点(-1,-1)故选A【点睛】本题考查指数函数的性质,考查函数恒过定点,属于基础题10、D【解析】答案:D左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案11、A【解析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象.【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD错误;且时,,据此可知选项B错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项12、B【解析】根据二次函数的图象与性质,可知区间在对称轴的右面,即,即可求得答案.【详解】函数为对称轴开口向上的二次函数,在区间上是单调增函数,区间在对称轴的右面,即,实数的取值范围为.故选B.【点睛】本题考查二次函数的图象与性质,明确二次函数的对称轴、开口方向与函数的单调性的关系是解题关键.二、填空题(本大题共4小题,共20分)13、【解析】作出在上的图象,为的图象与直线y=m交点的横坐标,利用数形结合思想即可求得M和N﹒【详解】作出在上的图象(如图所示)因为,,所以当的图象与直线相交时,由函数图象可得,设前三个交点横坐标依次为、、,此时和最小为N,由,得,则,,,;当的图象与直线相交时,设三个交点横坐标依次为、、,此时和最大为,由,得,则,,;所以.故答案为:.14、【解析】依据分段函数定义去求的值即可.【详解】由,可得,则由,可得故答案为:15、【解析】根据根式、对数的性质有求解集,即为函数的定义域.【详解】由函数解析式知:,解得,故答案为:.16、【解析】∵角的终边过点(3,-4),∴x=3,y=-4,r=5,∴cos=故答案为三、解答题(本大题共6小题,共70分)17、(1)(2)或.【解析】(1)圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,(2)设M,N的中点为H,假如以为直径的圆能过原点,则.,设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.代入即可求得,解得.再检验即可试题解析:(1)∵圆的圆心在的垂直平分线上,又的中点为,,∴的中垂线为.∵圆的圆心在轴上,∴圆的圆心为,因此,圆的半径,∴圆的方程为.(2)设是直线与圆的交点,将代入圆的方程得:.∴.∴的中点为.假如以为直径的圆能过原点,则.∵圆心到直线的距离为,∴.∴,解得.经检验时,直线与圆均相交,∴的方程为或.点睛:直线和圆的方程的应用,直线和圆的位置关系,务必牢记d与r的大小关系对应的位置关系结论的理解.18、(1)π(2)最大值1,最小值-【解析】(1)根据正弦函数的性质即可求解;(2)将看作整体,根据正弦函数的图像即可求解.【小问1详解】f(x)=sin,所以f(x)的最小正周期为T==π;【小问2详解】因为x∈,所以2x+∈,根据正弦函数的图像可知:当2x+=,即x=时,f(x)取得最大值1,当2x+=,即x=时,f(x)取得最小值-;综上,最小正周期为,最大值为1,最小值为.19、(1);(2)可以,理由见解析.【解析】(1)将图象上给定点的坐标代入对应的函数解析式计算作答.(2)利用(1)的结论结合题意,列出不等式求解作答.【小问1详解】依题意,当时,设,因函数的图象经过点A,即,解得,又当时,,解得,而图象过点,则,因此,所以与的函数关系式是.【小问2详解】由(1)知,因药物释放完毕后有,,则当空气中每立方米的药物含量降低到mg以下,有,解得:,因此至少需要36分钟后才能保证对人身无害,而课间操时间为分钟,所以学校可以选用这种药物用于教室消毒.【点睛】思路点睛:涉及实际应用问题,在理解题意的基础上,找出分散的数量关系,联想与题意有关的数学知识和方法,将实际问题转化、抽象为数学问题作答.20、(1)(2)最大值为,最小值为【解析】(1)利用二倍角公式和两角和正弦公式化简再由周期公式计算可得答案;(2)根据当的范围可得,再计算出可得答案.【小问1详解】,所以的最小正周期.【小问2详解】当时,,所以,所以,所以在区间上的最大值为和最小值.21、(1)2;(2).【解析】(1)确定函数的对称轴,从而可得函数的单调性,利用的定义域和值域均是,建立方程,即可求实数的值;(2)由函数的单调性得出在单调递减,在单调递增,从而求出在上的最大值和最小值,进而求出实数的取值范围.【小问1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论