版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年贵州省兴仁市凤凰中学高一数学第一学期期末质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共12小题,共60分)1.如果函数在区间上单调递减,则的取值范围是()A. B.C. D.以上选项均不对2.若,则A. B.C.1 D.3.已知函数(为自然对数的底数),若对任意,不等式都成立,则实数的取值范围是A. B.C. D.4.在空间坐标系中,点关于轴的对称点为()A. B.C. D.5.设,若直线与直线平行,则的值为A. B.C.或 D.或6.将函数的图像先向右平移个单位,再把所得函数图像横坐标变为原来的,纵坐标不变,得到函数的图像,若函数在上没有零点,则的取值范围是()A. B.C. D.7.已知过点和的直线与斜率为一2的直线平行,则m的值是A.-8 B.0C.2 D.108.函数与的图象在上的交点有()A.个 B.个C.个 D.个9.已知函数的部分图象如图所示,则下列说法正确的是()A.该图象对应的函数解析式为B.函数的图象关于直线对称C.函数的图象关于点对称D.函数在区间上单调递减10.的值为()A. B.C. D.11.已知,则a,b,c的大小关系是()A. B.C. D.12.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题(本大题共4小题,共20分)13.已知定义在上的奇函数满足,且当时,,则__________.14.已知向量=(1,2)、=(2,λ),,∥,则λ=______15.若函数是R上的减函数,则实数a的取值范围是___16.设当时,函数取得最大值,则__________.三、解答题(本大题共6小题,共70分)17.已知集合,集合(1)若“”是“”的充分条件,求实数的取值范围;(2)若,求实数的取值范围.18.已知直线经过点和点.(Ⅰ)求直线的方程;(Ⅱ)若圆的圆心在直线上,并且与轴相切于点,求圆的方程19.设集合.(1)当时,求实数的取值范围;(2)当时,求实数的取值范围.20.已知函数,不等式的解集为(1)求不等式的解集;(2)当在上单调递增,求m的取值范围21.已知定义域为的函数是奇函数.(1)求实数a的值;(2)若不等式在有解,求实数m取值范围.22.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,∠BCD=60°,AB=2AD,PD⊥平面ABCD,点M为PC的中点(1)求证:PA∥平面BMD;(2)求证:AD⊥PB;(3)若AB=PD=2,求点A到平面BMD的距离
参考答案一、选择题(本大题共12小题,共60分)1、A【解析】先求出二次函数的对称轴,由区间,在对称轴的左侧,列出不等式解出的取值范围【详解】解:函数的对称轴方程为:,函数在区间,上递减,区间,在对称轴的左侧,,故选:A【点睛】本题考查二次函数图象特征和单调性,以及不等式的解法,属于基础题2、A【解析】由,得或,所以,故选A【考点】同角三角函数间的基本关系,倍角公式【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系3、C【解析】由题意结合函数的单调性和函数的奇偶性求解不等式即可.【详解】由函数的解析式可知函数为定义在R上的增函数,且函数为奇函数,故不等式即,据此有,即恒成立;当时满足题意,否则应有:,解得:,综上可得,实数的取值范围是.本题选择C选项.【点睛】对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题.4、C【解析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.5、B【解析】由a(a+1)﹣2=0,解得a.经过验证即可得出【详解】由a(a+1)﹣2=0,解得a=﹣2或1经过验证:a=﹣2时两条直线重合,舍去∴a=1故选B【点睛】本题考查了两条直线平行的充要条件,考查了推理能力与计算能力,属于基础题6、C【解析】先由图象的变换求出的解析式,再由定义域求出的范围,再利用正弦函数的图象和性质,求得的取值范围.【详解】函数的图象先向右平移个单位长度,可得的图象,再将图象上每个点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,∴周期,由,则,若函数在上没有零点,结合正弦函数的图象观察则∴,,解得,又,解得,当时,解得,当时,,可得,.故选:C【点睛】本题考查正弦型的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式求解,属于较难题.第II卷7、A【解析】由题意可知kAB==-2,所以m=-8.故选A8、B【解析】在上解出方程,得出方程解的个数即可.详解】当时,解方程,得,整理得,得或.解方程,解得、、、或.解方程,解得、、.因此,方程在上的解有个.故选B.【点睛】本题考查正切函数与正弦函数图象的交点个数,可以利用图形法解决,也转化为方程根的个数来处理,考查计算能力,属于中等题.9、B【解析】先依据图像求得函数的解析式,再去代入验证对称轴、对称中心、单调区间的说法.【详解】由图象可知,即,所以,又,可得,又因为所以,所以,故A错误;当时,.故B正确;当时,,故C错误;当时,则,函数不单调递减.故D错误故选:B10、B【解析】由诱导公式可得,故选B.11、B【解析】根据指数函数的单调性、对数函数的单调性可得答案.【详解】根据指数函数的单调性可知,,即,即c>1,由对数函数的单调性可知,即.所以c>a>b故选:B12、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件二、填空题(本大题共4小题,共20分)13、##【解析】先求得是周期为的周期函数,然后结合周期性、奇偶性求得.【详解】因为函数为上的奇函数,所以,故,函数是周期为4的周期函数.当时,,则.故答案为:14、-2【解析】首先由的坐标,利用向量的坐标运算可得,接下来由向量平行的坐标运算可得,求解即可得结果【详解】∵,∴,∵∥,,∴,解得,故答案为:-215、【解析】按照指数函数的单调性及端点处函数值的大小关系得到不等式组,解不等式组即可.【详解】由题知故答案为:.16、【解析】利用辅助角公式化简函数解析式,再根据最值情况可得解.【详解】由辅助角公式可知,,,,当,时取最大值,即,,故答案为.三、解答题(本大题共6小题,共70分)17、(1);(2).【解析】(1)由已知可得,可得出关于实数的不等式组,由此可解得实数的取值范围;(2)分、两种情况讨论,根据可得出关于实数的不等式(组),综合可得出实数的取值范围.【小问1详解】解:由已知得,故有,解得,故的取值范围为.【小问2详解】解:当时,则,解得;当时,则或,解得.∴的取值范围为.18、(Ⅰ)x﹣y﹣1=0;(Ⅱ)(x+2)2+(y﹣3)2=4【解析】(Ⅰ)由两点式,可得直线l的方程;(Ⅱ)利用圆C的圆心在直线l上,且与y轴相切于点,确定圆心坐标与半径,即可求圆C的方程试题解析:(Ⅰ)由已知,直线的斜率,所以,直线的方程为.(Ⅱ)因为圆的圆心在直线上,可设圆心坐标为,因为圆与轴相切于点,所以圆心在直线上.所以.所以圆心坐标为,半径为4.所以,圆的方程为.考点:直线、圆的方程19、(1)(2)【解析】(1)化简集合A,B,由,得,转化为不等式关系,解之即可;(2)由,得到或,解之即可.试题解析:(1),,,即.(2)法一:,或,即法二:当时,或解得或,于是时,即20、(1);(2)﹒【解析】(1)根据二次不等式的解法求出b和c即可;(2)g(x)为开口向下的二次函数,要在[1,2]上递增,则对称轴为x=2或在x=2的右侧.【小问1详解】∵的解集为,∴1和2为方程的根,∴,则可得;∴,∴,即解集为:;【小问2详解】∵在上单调递增,∴,故,m的取值范围为:﹒21、(1);(2).【解析】(1)函数是上的奇函数,利用,注意检验求出的是否满足题意;(2)由(1)得,把不等式在有解转化为在有解,构造函数,利用基本不等式求解即可.【详解】(1)由为上的奇函数,所以,则,检验如下:当,,,则函数为上的奇函数.所以实数a的值.(2)由(1)知,则,由得:,因为,等价于在有解,则,令,设,当且仅当或(舍)取等号;则,所以实数m取值范围.【点睛】关键点睛:把不等式在有解转化为在有解,构造函数出是解决本题的关键.22、(1)详见解析;(2)详见解析;(3).【解析】(1)设AC和BD交于点O,MO为三角形PAC的中位线可得MO∥PA,再利用直线和平面平行的判定定理,证得结论(2)由PD⊥平面ABCD,可得PD⊥AD,再由cos∠BAD,证得AD⊥BD,可证AD⊥平面PBD,从而证得结论(3)点A到平面BMD的距离等于点C到平面BMD的距离h,求出MN、MO的值,利用等体积法求得点C到平面MBD的距离h【详解】(1)证明:设AC和BD交于点O,则由底面ABCD是平行四边形可得O为AC的中点由于点M为PC的中点,故MO为三角形PAC的中位线,故MO∥PA.再由PA不在平面BMD内,而MO在平面BMD内,故有PA∥平面BMD(2)由PD⊥平面ABCD,可得PD⊥AD,平行四边形ABCD中,∵∠BCD=60°,AB=2AD,∴cos∠BADcos60°,∴AD⊥BD这样,AD垂直于平面PBD内的两条相交直线,故AD⊥平面PBD,∴AD⊥PB(3)若AB=PD=2,则AD=1,BD=AB•sin∠BAD=2,由于平面BMD经过AC的中点,故点A到平面BMD的距离等于点C到平面BMD的距离取CD得中点N,则MN⊥平面ABCD,且MNPD=1设点C到平面MBD的距离为h
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【语文课件】声母课件
- 2024年新高一语文初升高衔接《赤壁赋》《登泰山记》含答案解析
- 【语文课件】土地的誓言课件
- 纸制风琴式文件袋市场发展现状调查及供需格局分析预测报告
- 皮肤增白剂产业规划专项研究报告
- 消毒设备产业规划专项研究报告
- 球拍胶粒市场发展预测和趋势分析
- 硅藻土制浴室地垫市场发展预测和趋势分析
- 个人用肥皂市场洞察报告
- 美容凝胶市场发展现状调查及供需格局分析预测报告
- 健身指导与管理专业职业生涯规划书
- 招投标保密协议范本模板
- 深圳市中小学生流疫苗接种知情同意书
- 下肢关节康复器并发症处理流程
- 《量子计算入门》课件
- 阿奇舒勒矛盾矩阵表
- 《小学语文关于整本书阅读的策略研究》课题研究方案
- 管理学基础:管理实训:第十二章考察某企业的控制系统和第十三章了解某企业的质量保证体系
- 信号塔无人机精细化巡检
- 《口腔医学影像学课件》
- 23J916-1:住宅排气道(一)
评论
0/150
提交评论