2023-2024学年广西钦州市高一数学第一学期期末达标检测试题含解析_第1页
2023-2024学年广西钦州市高一数学第一学期期末达标检测试题含解析_第2页
2023-2024学年广西钦州市高一数学第一学期期末达标检测试题含解析_第3页
2023-2024学年广西钦州市高一数学第一学期期末达标检测试题含解析_第4页
2023-2024学年广西钦州市高一数学第一学期期末达标检测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年广西钦州市高一数学第一学期期末达标检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.若,则()A. B.C. D.2.已知函数在区间上单调递减,则实数的取值范围是()A. B.C. D.3.为了得到函数的图象,可以将函数的图象()A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位4.已知函数是偶函数,且,则()A. B.0C.2 D.45.cos600°值等于A. B.C. D.6.若,则的值为A. B.C. D.7.下列函数是奇函数,且在上单调递增的是()A. B.C. D.8.若幂函数的图象经过点,则的值为()A. B.C. D.9.下列函数中,既是偶函数,又在区间上单调递增的函数是()A. B.C. D.10.若点、、在同一直线上,则()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知,则的大小关系是___________________.(用“”连结)12.已知函数,若函数恰有两个不同的零点,则实数的取值范围是_____13.一条从西向东的小河的河宽为3.5海里,水的流速为3海里/小时,如果轮船希望用10分钟的时间从河的南岸垂直到达北岸,轮船的速度应为______;14.已知函数,若,则的取值范围是__________15.已知奇函数f(x),当x>0,fx=x2三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π](1)若与共线,求x的值;(2)若⊥,求x的值;(3)记f(x)=•,当f(x)取得最小值时,求x的值17.已知函数.(1)在①,②这两个条件中任选一个,补充在下面的横线上,并解答.问题:已知函数___________,,求的值域.注:如果选择两个条件分别解答,按第一个解答计分.(2)若,,,求的取值范围.18.已知函数,,当时,恒有(1)求的表达式及定义域;(2)若方程有解,求实数的取值范围;(3)若方程的解集为,求实数的取值范围19.(1)计算:(2)若,,求的值.20.已知函数,.设函数.(1)求函数的定义域;(2)判断奇偶性并证明;(3)当时,若成立,求x的取值范围.21.已知点,圆.(1)求过点且与圆相切的直线方程;(2)若直线与圆相交于,两点,且弦的长为,求实数的值.

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、A【解析】应用辅助角公式将条件化为,再应用诱导公式求.【详解】由题设,,则,又.故选:A2、C【解析】求出函数的定义域,由单调性求出a的范围,再由函数在上有意义,列式计算作答.【详解】函数定义域为,,因在,上单调,则函数在,上单调,而函数在区间上单调递减,必有函数在上单调递减,而在上递增,则在上递减,于是得,解得,由,有意义得:,解得,因此,,所以实数的取值范围是.故选:C3、A【解析】,设,,令,把函数的图象向右平移个单位得到函数的图象.选A.4、D【解析】由偶函数定义可得,代入可求得结果.【详解】为偶函数,,,故选:D5、B【解析】利用诱导公式化简即可得到结果.【详解】cos600°故选B【点睛】本题考查利用诱导公式化简求值,考查特殊角的三角函数值,属于基础题.6、B【解析】根据诱导公式将原式化简为,分子分母同除以,即可求出结果.【详解】因为,又,所以原式.故选B【点睛】本题主要考查诱导公式和同角三角函数基本关系,熟记公式即可,属于基础题型.7、D【解析】利用幂函数的单调性和奇函数的定义即可求解.【详解】当时,幂函数为增函数;当时,幂函数为减函数,故在上单调递减,、和在上单调递增,从而A错误;由奇函数定义可知,和不是奇函数,为奇函数,从而BC错误,D正确.故选:D.8、C【解析】由已知可得,即可求得的值.【详解】由已知可得,解得.故选:C.9、D【解析】根据常见函数的单调性和奇偶性可直接判断出答案.【详解】是奇函数,不满足题意;的定义域为,是非奇非偶函数,不满足题意;是非奇非偶函数,不满足题意;是偶函数,且在区间上单调递增,满足题意;故选:D10、A【解析】利用结合斜率公式可求得实数的值.【详解】因为、、在同一直线上,则,即,解得.故选:A.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】利用特殊值即可比较大小.【详解】解:,,,故.故答案为:.12、【解析】题目转化为,画出函数图像,根据图像结合函数值计算得到答案.详解】,,即,画出函数图像,如图所示:,,根据图像知:.故答案为:13、15海里/小时【解析】先求出船的实际速度,再利用勾股定理得到轮船的速度.【详解】设船的实际速度为,船速,水的流速,则海里/小时,∴海里/小时.故答案为:15海里/小时14、【解析】画出函数图象,可得,,再根据基本不等式可求出.【详解】画出的函数图象如图,不妨设,因为,则由图可得,,可得,即,又,当且仅当取等号,因为,所以等号不成立,所以解得,即的取值范围是.故答案为:.15、-10【解析】根据函数奇偶性把求f-2的值,转化成求f2【详解】由f(x)为奇函数,可知f-x=-f又当x>0,fx=故f故答案为:-10三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2);(3).【解析】(1)利用两向量平行有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(2)利用两向量垂直有可得到一个关于的方程,利用三角函数恒等变化化简进而求得x的值.(3)根据化出一个关于的方程,再利用恒等变化公式将函数转化成,从而找到最小值所取得的x的值.【详解】解:(1)∵向量=(cosx,-sinx),=(1,),=(1,1),x∈[0,π]与共线,∴,∴tanx=-,∵x∈[0,π],∴x=(2)∵⊥,∴cosx-sinx=0,∴tanx=1,∵x∈[0,π],∴x=(3)f(x)=•=cosx-,∵x∈[0,π],∴x-∈[-,],∴x-=时,f(x)取得最小值-2,∴当f(x)取得最小值时,x=【点睛】向量间的位置关系:两向量垂直,则,两向量平行,则.17、(1)答案见解析(2)【解析】(1)根据复合函数的性质即可得到的值域;(2)令,求出其最小值,则问题转化为恒成立,进而求最小值即可.【小问1详解】选择①,,令,则,故函数的值域为R,即的值域为R.选择②,,令,则,因为函数单调递增,所以,即的值域为.【小问2详解】令.当时,,,;当时,,,.因为,所以的最小值为0,所以,即.令,则,所以,故,即的取值范围为.18、(1),;(2);(3)【解析】(1)由已知中函数,,当时,恒有,我们可以构造一个关于方程组,解方程组求出的值,进而得到的表达式;(2)转化为,解得,可求出满足条件的实数的取值范围.(3)根据对数的运算性质,转化为一个关于的分式方程组,进而根据方程的解集为,则方程组至少一个方程无解或两个方程的解集的交集为空集,分类讨论后,即可得到答案.【详解】(1)∵当时,,即,即,整理得恒成立,∴,又,即,从而∴,∵,∴,或,∴的定义域为(2)方程有解,即,∴,∴,∴,∴,或,解得或,∴实数的取值范围(3)方程的解集为,∴,∴,∴,方程的解集为,故有两种情况:①方程无解,即,得,②方程有解,两根均在内,,则解得综合①②得实数的取值范围是【点睛】关键点点睛:函数与方程、对数函数的单调性解不等式以及一元二次方程根的分布,综合性比较强,根据转化思想,不断转化是解题的关键,考查了分类讨论的思想,属于难题.19、(1);(2).【解析】(1)利用分数指数幂运算法则分别对每一项进行化简,然后合并求解;(2)先利用已知条件,把m、n表示出来,代入要求解的式子中,利用对数的运算法则化简即可.【详解】(1)原式(2)因为,,所以,,所以20、(1);(2)奇函数,证明见解析;(3).【解析】(1)根据对数函数真数大于0,建立不等式组求解即可;(2)根据奇函数的定义判断即可;(3)根据对数函数的单调性解不等式求解即可.【详解】(1)由,解得,所以函数的定义域为.(2)是奇函数.证明如下:,都有,∴是奇函数.(3)由可得,得,由对数函数的单调性得,解得解集为.21、(1)或;(2).【解析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r,直接求解圆的切线方程即可(2)利用圆

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论