2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题含解析_第1页
2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题含解析_第2页
2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题含解析_第3页
2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题含解析_第4页
2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖南省临澧一中数学高一上期末教学质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.可以化简成()A. B.C. D.2.函数f(x)=A.(-2-1) B.(-1,0)C.(0,1) D.(1,2)3.函数的零点所在区间是()A.(0,1) B.(1,2)C.(2,3) D.(3,+∞)4.已知,,c=40.1,则()A. B.C. D.5.已知是空间中两直线,是空间中的一个平面,则下列命题正确的是()A.已知,若,则 B.已知,若,则C.已知,若,则 D.已知,若,则6.在有声世界,声强级是表示声强度相对大小的指标.声强级(单位:dB)与声强度(单位:)之间的关系为,其中基准值.若声强级为60dB时的声强度为,声强级为90dB时的声强度为,则的值为()A.10 B.30C.100 D.10007.下列四个式子中是恒等式的是()A. B.C. D.8.已知,,,则,,三者的大小关系是()A. B.C. D.9.若的外接圆的圆心为O,半径为4,,则在方向上的投影为()A.4 B.C. D.110.已知函数是定义域为R的奇函数,且,当时,,则等于()A.-2 B.2C. D.-二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足以下三个条件:①定义域为R且函数图象连续不断;②是偶函数;③恰有3个零点.请写出一个符合要求的函数___________.12.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______13.函数的定义域为______14.函数f(x)=2sin(ωx+φ)(ω>0,-<φ<)的部分图象如图所示,则的值是________15.已知函数,则__________16.的边的长分别为,且,,,则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆O:,点,点,直线l过点P(1)若直线l与圆O相切,求l的方程;(2)若直线l与圆O交于不同的两点A,B,线段AB的中点为M,且M的纵坐标为-,求△NAB的面积18.已知函数满足:.(1)证明:;(2)对满足已知的任意值,都有成立,求m的最小值.19.如图,三棱台DEF­ABC中,AB=2DE,G,H分别为AC,BC的中点(1)求证:平面ABED∥平面FGH;(2)若CF⊥BC,AB⊥BC,求证:平面BCD⊥平面EGH.20.如图所示,在中,,,与相交于点.(1)用,表示,;(2)若,证明:,,三点共线.21.某旅游风景区发行的纪念章即将投放市场,根据市场调研情况,预计每枚该纪念章的市场价y(单位:元)与上市时间x(单位:天)的数据如下:上市时间x天2620市场价y元10278120(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价y与上市时间x的变化关系并说明理由:①;②;③;(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格;(3)利用你选取的函数,若存在,使得不等式成立,求实数k的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据指数幂和根式的运算性质转化即可【详解】解:,故选:B2、C【解析】,所以零点在区间(0,1)上考点:零点存在性定理3、B【解析】计算出,并判断符号,由零点存在性定理可得答案.【详解】因为,,所以根据零点存在性定理可知函数的零点所在区间是,故选:B【点睛】本题考查了利用零点存在性定理判断函数的零点所在区间,解题方法是计算区间端点的函数值并判断符号,如果异号,说明区间内由零点,属于基础题.4、A【解析】利用指对数函数的性质判断指对数式的大小.【详解】由,∴.故选:A.5、D【解析】A.n和m的方向无法确定,不正确;B.要得到,需要n垂直于平面内两条相交直线,不正确;C.直线n有可能在平面内,不正确;D.平行于平面的垂线的直线与此平面垂直,正确.【详解】A.一条直线与一个平面平行,直线的方向无法确定,所以不一定正确;B.一条直线与平面内两条相交直线垂直,则直线垂直于平面,无法表示直线n垂直于平面内两条相交直线,所以不一定正确;C.直线n有可能在平面内,所以不一定正确;D.,则直线n与m的方向相同,,则,正确;故选D【点睛】本题考查了直线与平面的位置关系的判断,遇到不正确的命题画图找出反例即可.本题属于基础题.6、D【解析】根据题意,把转化为对数运算即可计算【详解】由题意可得:故选:D【点睛】数学中的新定义题目解题策略:(1)仔细阅读,理解新定义的内涵;(2)根据新定义,对对应知识进行再迁移.7、D【解析】,故错误,故错误,故错误故选8、C【解析】分别求出,,的范围,即可比较大小.【详解】因为在上单调递增,所以,即,因为在上单调递减,所以,即,因为在单调递增,所以,即,所以,故选:C9、C【解析】过作的垂线,垂足为,分析条件可得,作出图分析结合投影的几何意义可进而可求得投影..【详解】过作的垂线,垂足为,则M为BC的中点,连接AM,由,可得,所以三点共线,即有,且.所以.在方向上的投影为,故选:C.10、B【解析】根据奇函数性质和条件,求得函数的周期为8,再化简即可.【详解】函数是定义域为R的奇函数,则有:又,则则有:可得:故,即的周期为则有:故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、(答案不止一个)【解析】根据偶函数和零点的定义进行求解即可.详解】函数符合题目要求,理由如下:该函数显然满足①;当时,,所以有,当时,,所以有,因此该函数是偶函数,所以满足②当时,,或,当时,,或舍去,所以该函数有3个零点,满足③,故答案为:12、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题13、【解析】由对数的真数大于零、二次根式的被开方数非负,分式的分母不为零,列不等式组可求得答案【详解】由题意得,解得,所以函数的定义域为,故答案为:14、【解析】,把代入,得,,,故答案为考点:1、已知三角函数的图象求解析式;2、三角函数的周期性【方法点睛】本题主要通过已知三角函数的图象求解析式考查三角函数的性质,属于中档题.求解析时求参数是确定函数解析式的关键,由特殊点求时,一定要分清特殊点是“五点法”的第几个点,用五点法求值时,往往以寻找“五点法”中的第一个点为突破口,“第一点”(即图象上升时与轴的交点)时;“第二点”(即图象的“峰点”)时;“第三点”(即图象下降时与轴的交点)时;“第四点”(即图象的“谷点”)时;“第五点”时15、3【解析】16、【解析】由正弦定理、余弦定理得答案:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)根据题意,分直线斜率存在与不存在两种情况讨论求解,当直线斜率存在时,根据点到直线的距离公式求参数即可;(2)设直线l方程为,,进而与圆的方程联立得中点的坐标,,解方程得直线方程,再求三角形面积即可.【小问1详解】解:若直线l的斜率不存在,则l的方程为,此时直线l与圆O相切,符合题意;若直线l的斜率存在,设直线l的方程为,因为直线l与圆O相切,所以圆心(0,0)到l的距离为2,即,解得,所以直线l的方程为,即故直线l的方程为或【小问2详解】解:设直线l的方程为,因为直线l与圆O相交,所以结合(1)得联立方程组消去y得,设,则,设中点,,①代入直线l的方程得,②解得或(舍去)所以直线l的方程为因为圆心到直线l的距离,所以因为N到直线l的距离所以18、(1)证明见解析;(2).【解析】(1)由二次不等式恒成立,可得判别式小于等于0,化简即可得证;(2)由(1)可得,分别讨论或,运用参数分离和函数的单调性,可求得所求的最小值.【详解】(1)证明:.即恒成立.则,化简得;(2)由(1)得,当时,,令,则,令在上单调递增,所以,所以;当时,,所以,此时或0,,从而有,综上可得,m的最小值为.【点睛】方法点睛:本题考查不等式的证明,以及不等式恒成立问题,常运用参变分离的方法,运用函数的单调性,最值的方法得以解决.19、(1)见解析(2)见解析【解析】解析:(1)在三棱台DEFABC中,BC=2EF,H为BC的中点,BH∥EF,BH=EF,四边形BHFE为平行四边形,有BE∥HF.BE∥平面FGH在△ABC中,G为AC的中点,H为BC的中点,GH∥AB.AB∥平面FGH又AB∩BE=B,所以平面ABED∥平面FGH.(2)连接HE,EGG,H分别为AC,BC的中点,GH∥AB.AB⊥BC,GH⊥BC.又H为BC的中点,EF∥HC,EF=HC,四边形EFCH是平行四边形,有CF∥HE.CF⊥BC,HE⊥BC.HE,GH⊂平面EGH,HE∩GH=H,BC⊥平面EGH.BC⊂平面BCD,平面BCD⊥平面EGH.20、(1),;(2)见解析【解析】(1)首先根据题中所给的条件,可以求得,从而有,将代入,整理求得结果,同理求得;(2)根据条件整理得到,从而得到与共线,即,,三点共线,证得结果.【详解】(1)解:因为,所以,所以.因为,所以,所以.(2)证明:因为,所以.因为,所以,即与共线.因为与的有公共点,所以,,三点共线.【点睛】该题考查的是有关向量的问题,涉及到的知识点有平面向量基本定理,利用向量共线证得三点共线,属于简单题目.21、(1)选择,理由见解析,(2)上市天数10天,最低价格70元,(3)【解析】(1)根据函数的单调性选取即可.(2)把点代入中求解参数,再根据二次函数的最

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论