2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题含解析_第1页
2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题含解析_第2页
2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题含解析_第3页
2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题含解析_第4页
2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年湖北省安陆第一中学数学高一上期末复习检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.2.设,则等于A. B.C. D.3.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交 B.平行C.异面 D.以上都有可能4.若,,,则、、大小关系为()A. B.C. D.5.甲、乙两位同学解答一道题:“已知,,求的值.”甲同学解答过程如下:解:由,得.因为,所以.所以.乙同学解答过程如下:解:因为,所以.则在上述两种解答过程中()A.甲同学解答正确,乙同学解答不正确 B.乙同学解答正确,甲同学解答不正确C.甲、乙两同学解答都正确 D.甲、乙两同学解答都不正确6.设函数,则下列说法错误的是()A.当时,的值域为B.的单调递减区间为C.当时,函数有个零点D.当时,关于的方程有个实数解7.已知集合,集合为整数集,则A. B.C. D.8.下列函数值为的是()A.sin390° B.cos750°C.tan30° D.cos30°9.若幂函数f(x)的图象过点(16,8),则f(x)<f(x2)的解集为A.(–∞,0)∪(1,+∞) B.(0,1)C.(–∞,0) D.(1,+∞)10.一个机器零件的三视图如图所示,其中侧视图是一个半圆与边长为的正方形,俯视图是一个半圆内切于边长为的正方形.若该机器零件的表面积为,则的值为A.4 B.2C.8 D.6二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知在上是增函数,则的取值范围是___________.12.如图,扇形的面积是1,它的弧长是2,则扇形的圆心角的弧度数为______13.已知函数若是函数的最小值,则实数a的取值范围为______14.设,则__________15.已知,则___________.三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知A,B,C为的内角.(1)若,求的取值范围;(2)求证:;(3)设,且,,,求证:17.已知函数.(1)解不等式;(2)若函数,其中为奇函数,为偶函数,若不等式对任意恒成立,求实数的取值范围.18.如图,在圆柱中,,分别是上、下底面圆的直径,且,,分别是圆柱轴截面上的母线.(1)若,圆柱的母线长等于底面圆的直径,求圆柱的表面积.(2)证明:平面平面.19.已知集合,,(1)求;(2)若,求m的取值范围20.近年来,国家大力推动职业教育发展,职业教育体系不断完善,人才培养专业结构更加符合市场需求.一批职业培训学校以市场为主导,积极参与职业教育的改革和创新.某职业培训学校共开设了六个专业,根据前若干年的统计数据,学校统计了各专业每年的就业率(直接就业的学生人数与招生人数的比值)和每年各专业的招生人数,具体统计数据如下表:专业机电维修车内美容衣物翻新美容美发泛艺术类电脑技术招生人数就业率(1)从该校已毕业的学生中随机抽取人,求该生是“衣物翻新”专业且直接就业的概率;(2)为适应市场对人才需求的变化,该校决定从明年起,将“电脑技术”专业的招生人数减少人,将“机电维修”专业的招生人数增加人,假设“电脑技术”专业的直接就业人数不变,“机电维修”专业的就业率不变,其他专业的招生人数和就业率都不变,要使招生人数调整后全校整体的就业率比往年提高个百分点,求的值21.在平面直角坐标系中,圆经过三点(1)求圆的方程;(2)若圆与直线交于两点,且,求的值

参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C2、D【解析】由题意结合指数对数互化确定的值即可.【详解】由题意可得:,则.本题选择D选项.【点睛】本题主要考查对数与指数的互化,对数的运算性质等知识,意在考查学生的转化能力和计算求解能力.3、B【解析】因为G1,G2分别是△SAB和△SAC的重心,所以,所以.又因为M、N分别为AB、AC的中点,所以MN//BC,所以考点:线面平行的判定定理;线面平行的性质定理;公理4;重心的性质点评:我们要掌握重心性质:若G1为△SAB的重心,M为AB中点,则4、B【解析】由指数函数、对数函数、正弦函数的性质把已知数与0和1比较后可得【详解】,,,所以故选:B【点睛】关键点点睛:本题考查实数的大小比较,对于幂、对数、三角函数值的大小比较,如果能应用相应函数单调性的应该利用单调性比较,如果不能转化,或者是不同类型的的数,可以结合函数的性质与特殊值如0或1等比较后可得结论5、D【解析】分别利用甲乙两位同学的解题方法解题,从而可得出答案.【详解】解:对于甲同学,由,得,因为因为,所以,所以,故甲同学解答过程错误;对于乙同学,因为,所以,故乙同学解答过程错误.故选:D.6、C【解析】利用二次函数和指数函数的值域可判断A选项;利用二次函数和指数函数的单调性可判断B选项;利用函数的零点个数求出的取值范围,可判断C选项;解方程可判断D选项.【详解】选项A:当时,当时,,当时,,当时,,综上,函数的值域为,故A正确;选项B:当时,的单调递减区间为,当时,函数为单调递增函数,无单调减区间,所以函数的单调递减为,故B正确;选项C:当时,令,解得或(舍去),当时,要使有解,即在上有解,只需求出的值域即可,当时,,且函数在上单调递减,所以此时的范围为,故C错误;选项D:当时,,即,即,解得或,当,时,,则,即,解得,所以当时,关于的方程有个实数解,故D正确.故选:C.7、A【解析】,选A.【考点定位】集合的基本运算.8、A【解析】由诱导公式计算出函数值后判断详解】,,,故选:A9、D【解析】先根据幂函数f(x)的图象过点(16,8)求出α=>0,再根据幂函数的单调性得到0<x<x2,解不等式即得不等式的解集.【详解】设幂函数的解析式是f(x)=xα,将点(16,8)代入解析式得16α=8,解得α=>0,故函数f(x)在定义域是[0,+∞),故f(x)在[0,+∞)递增,故,解得x>1.故选D【点睛】(1)本题主要考查幂函数的概念和解析式的求法,考查幂函数的图像和性质,意在考查学生对这些知识的掌握水平和分析推理能力.(2)幂函数在是增函数,,幂函数在是减函数,且以两条坐标轴为渐近线.10、A【解析】几何体为一个正方体与四分之一个球的组合体,所以表面积为,选A点睛:空间几何体表面积的求法(1)以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量(2)多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理(3)旋转体的表面积问题注意其侧面展开图的应用二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】将整理分段函数形式,由在上单调递增,进而可得,即可求解【详解】由题,,显然,在时,单调递增,因为在上单调递增,所以,即,故答案为:【点睛】本题考查已知函数单调性求参数,考查分段函数,考查一次函数的单调性的应用12、【解析】根据扇形的弧长公式和面积公式,列出方程组,即可求解.【详解】由题意,设扇形所在圆的半径为,扇形的弧长为,因为扇形的面积是1,它的弧长是2,由扇形的面积公式和弧长公式,可得,解得,.故答案为2.【点睛】本题主要考查了扇形的弧长公式,以及扇形的面积公式的应用,其中解答中熟记扇形的弧长公式和扇形的面积公式,准确计算是解答的关键,着重考查了推理与运算能力,属于基础题.13、【解析】考虑分段函数的两段函数的最小值,要使是函数的最小值,应满足哪些条件,据此列出关于a的不等式,解得答案.【详解】要使是函数的最小值,则当时,函数应为减函数,那么此时图象的对称轴应位于y轴上或y轴右侧,即当时,,当且仅当x=1时取等号,则,解得,所以,故答案为:.14、2【解析】由函数的解析式可知,∴考点:分段函数求函数值点评:对于分段函数,求函数的关键是要代入到对应的函数解析式中进行求值15、##-0.75【解析】将代入函数解析式计算即可.【详解】令,则,所以.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1)(2)证明见解析(3)证明见解析【解析】(1)根据两角和的正切公式及均值不等式求解;(2)先证明,再由不等式证明即可;(3)找出不等式的等价条件,换元后再根据函数的单调性构造不等式,利用不等式性质即可得证.【小问1详解】,为锐角,,,解得,当且仅当时,等号成立,即.【小问2详解】在中,,,,.【小问3详解】由(2)知,令,原不等式等价为,在上为增函数,,,同理可得,,,,故不等式成立,问题得证.【点睛】本题第3问的证明需要用到,换元后转换为,再构造不等式是证明的关键,本题的难点就在利用函数单调性构造出不等式.17、(1)(1,3);(2).【解析】(1)设t=2x,利用f(x)>16﹣9×2x,转化不等式为二次不等式,求解即可;(2)利用函数的奇偶性以及函数恒成立,结合对勾函数的图象与性质求解函数的最值,推出结果【详解】解:(1)设t=2x,由f(x)>16﹣9×2x得:t﹣t2>16﹣9t,即t2﹣10t+16<0∴2<t<8,即2<2x<8,∴1<x<3∴不等式的解集为(1,3)(2)由题意得解得.2ag(x)+h(2x)≥0,即,对任意x∈[1,2]恒成立,又x∈[1,2]时,令,在上单调递增,当时,有最大值,所以.【点睛】本题考查函数与方程的综合应用,二次函数的性质,对勾函数的图像与性质以及函数恒成立的转化,考查计算能力18、(1).(2)证明见详解【解析】(1)借助圆柱的母线垂直于底面构造直角三角形计算可得半径,然后可得表面积;(2)构造平行四边形证明,结合已知可证.【小问1详解】连接CF、DF,因为CD为直径,记底面半径为R,EF=2R则又解得R=2圆柱的表面积.【小问2详解】连接、、、由圆柱性质知且且四边形为平行四边形又平面CDE,平面CDE平面CDE同理,平面CDE又,平面ABH,平面ABH平面平面.19、(1)(2)【解析】(1)先求得集合A,再由集合的补集运算和交集运算可求得答案;(2)根据条件建立不等式组,可求得所求范围.【小问1详解】因为,,所以,【小问2详解】因为,所以解得.故m的取值范围是20、(1)0.08(2)120【解析】理解题意,根据数据列式求解【小问1详解】由题意,该校往年每年的招生人数为,“衣物翻新”专业直接就业的学生人数为,所以所求的概率为【小问2详解】由表格中的数据,可得往年各专业直接就业的人数分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论