版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年内蒙古自治区赤峰市高一上数学期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1.下列四组函数中,表示同一函数的一组是()A., B.,C., D.,2.下面四个不等式中不正确的为A. B.C. D.3.计算的值为A. B.C. D.4.若,,,则a,b,c之间的大小关系是()A.c>b>a B.c>a>bC.a>c>b D.b>a>c5.为得到函数的图象,只需将函数的图象()A.向左平移个长度单位 B.向右平移个长度单位C.向左平移个长度单位 D.向右平移个长度单位6.已知,则()A. B.C. D.7.已知,,,则,,的大小关系是()A. B.C. D.8.已知函数,下列说法错误的是()A.函数在上单调递减B.函数是最小正周期为的周期函数C.若,则方程在区间内,最多有4个不同的根D.函数在区间内,共有6个零点9.下列各组函数中,表示为同一个函数的是A.与 B.与C.与 D.与且10.函数的零点所在的一个区间是()A. B.C. D.二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11.已知函数图像关于对称,当时,恒成立,则满足的取值范围是_____________12.若,则的终边所在的象限为______13.已知函数(且),若对,,都有.则实数a的取值范围是___________14.正方体中,分别是,的中点,则直线与所成角的余弦值是_______.15.已知的图象的对称轴为_________________三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16.已知,,且.(1)求的值;(2)求.17.已知,且向量在向量的方向上的投影为,求:(1)与的夹角;(2).18.化简并求值(1)求的值.(2)已知,且是第三象限角,求的值.19.一片森林原来的面积为a,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的,已知到今年为止,森林剩余面积为原来的.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年?(3)今后最多还能砍伐多少年?20.已知函数,为偶函数(1)求k的值.(2)若函数,是否存在实数m使得的最小值为0,若存在,求出m的值;若不存在,请说明理由21.由历年市场行情知,从11月1日起的30天内,某商品每件的销售价格(元)与时间(天)的函数关系是,日销售量(件)与时间(天)的函数关系是.(1)设该商品的日销售额为y元,请写出y与t的函数关系式;(商品的日销售额=该商品每件的销售价格×日销售量)(2)求该商品的日销售额的最大值,并指出哪一天的销售额最大?
参考答案一、选择题(本大题共10小题;在每小题给出的四个选项中,只有一个选项符合题意,请将正确选项填涂在答题卡上.)1、C【解析】分析每个选项中两个函数的定义域,并化简函数解析式,利用函数相等的概念可得出合适的选项.【详解】对于A选项,函数的定义域为,函数的定义域为,A选项中的两个函数不相等;对于B选项,函数的定义域为,函数的定义域为,B选项中的两个函数不相等;对于C选项,函数、的定义域均为,且,C选项中的两个函数相等;对于D选项,对于函数,有,解得,所以,函数的定义域为,函数的定义域为,D选项中的两个函数不相等.故选:C.2、B【解析】A,利用三角函数线比较大小;B,取中间值1和这两个数比较;C,利用对数函数图象比较这两个数的大小;D,取中间值1和这两个数比较【详解】解:A,如图,利用三角函数线可知,所对的弧长为,,∴,A对;B,由于,B错;C,如图,,则,C对;D,,D对;故选:B【点睛】本题主要考查比较两个数的大小,考查三角函数线的作用,考查指对数式的大小,属于基础题3、D【解析】直接由二倍角的余弦公式,即可得解.【详解】由二倍角公式得:,故选D.【点睛】本题考查了二倍角的余弦公式,属于基础题.4、C【解析】利用指数函数与对数函数的单调性即可得出【详解】∵a=22.5>1,<0,,∴a>c>b,故选C【点睛】本题考查了指数函数与对数函数的单调性,考查了推理能力与计算能力,属于基础题5、A【解析】先将变形为,即可得出结果.详解】,只需将函数的图象向左平移个长度单位.故选:A.【点睛】本题考查三角函数的平移变换,属于基础题.6、C【解析】因为,所以;因为,,所以,所以.选C7、B【解析】分别求出的范围,然后再比较的大小.【详解】,,,,,,并且,,综上可知故选:B【点睛】本题考查指对数和三角函数比较大小,意在考查转化与化归的思想和基础知识,属于基础题型.8、B【解析】A.由时,判断;B.易知是偶函数,作出其图象判断;C.在同一坐标系中作出的图象判断;D.根据函数是偶函数,利用其图象,判断的零点个数即可.【详解】A.当时,,而,上递减,故正确;B.因为,所以是偶函数,当时,,作出其图象如图所示:由图象知;函数不是周期函数,故错误;C.在同一坐标系中作出的图象,如图所示:由图象知:当,方程在区间内,最多有4个不同的根,故正确;D.因为函数是偶函数,只求的零点个数即可,如图所示:由函数图象知,在区间内共有3个,所以函数在区间内,共有6个零点,故正确;故选:B9、D【解析】A,B两选项定义域不同,C选项对应法则不同,D选项定义域和对应法则均相同,即可得选项.【详解】A.,,两个函数的定义域不同,不是同一函数,B.,,两个函数的定义域不同,不是同一函数,C.,两个的对应法则不相同,不是同一函数D.,,两个函数的定义域和对应法则相同是相同函数,故选D【点睛】此题是个基础题.本题考查函数的三要素:定义域、值域、对应关系,相同的函数必然具有相同的定义域、值域、对应关系.要使数与的同一函数,必须满足定义域和对应法则完全相同即可,注意分析各个选项中的个函数的定义域和对应法则是否相同,通常的先后顺序为先比较定义域是否相同,其次看对应关系或值域..10、B【解析】判断函数的单调性,再借助零点存在性定理判断作答.【详解】函数在R上单调递增,而,,所以函数的零点所在区间为.故选:B二、填空题(本大题共5小题,请把答案填在答题卡中相应题中横线上)11、【解析】由函数图像关于对称,可得函数是偶函数,由当时,恒成立,可得函数在上为增函数,从而将转化为,进而可求出取值范围【详解】因为函数图像关于对称,所以函数是偶函数,所以可转化为因为当时,恒成立,所以函数在上为增函数,所以,解得,所以取值范围为,故答案为:12、第一或第三象限【解析】将表达式化简,,二者相等,只需满足与同号即可,从而判断角所在的象限.【详解】由,,若,只需满足,即与同号,因此的终边在第一或第三象限.故答案为:第一或第三象限.13、【解析】由条件可知函数是增函数,可得分段函数两段都是增函数,且时,满足,由不等式组求解即可.【详解】因为对,且都有成立,所以函数在上单调递增.所以,解得.故答案为:14、【解析】结合异面直线所成角的找法,找出角,构造三角形,计算余弦值,即可【详解】连接,而,所以直线与所成角即为,设正方体边长为1,则,所以余弦值为【点睛】考查了异面直线所成角的计算方法,关键得出直线与所成角即为,难度中等15、【解析】根据诱导公式可得,然后用二倍角公式化简,进而可求.【详解】因为所以,故对称轴为.故答案为:三、解答题(本大题共6小题.解答应写出文字说明,证明过程或演算步骤.)16、(1);(2).【解析】(1)先根据,且,求出,则可求,再求;(2)先根据,,求出,再根据求解即可.【详解】(1)∵且,∴,∴,∴;(2)∵,∴,又∵,∴,,所以.【点睛】三角函数求值有三类,(1)“给角求值”:一般所给出的角都是非特殊角,从表面上来看是很难的,但仔细观察非特殊角与特殊角总有一定关系,解题时,要利用观察得到的关系,结合公式转化为特殊角并且消除非特殊角的三角函数而得解.(2)“给值求值”:给出某些角的三角函数式的值,求另外一些角的三角函数值,解题关键在于“变角”,使其角相同或具有某种关系.(3)“给值求角”:实质是转化为“给值求值”,先求角的某一函数值,再求角的范围,确定角.本题考查运算求解能力,是中档题.17、(1);(2)【解析】(1)由题知,进而得出,即可求得.(2)根据数量积的定义即可得出答案.【详解】解:(1)由题意,,所以.又因为,所以.(2).【点睛】本题考查了向量的夹角、向量的数量积,考查学生对公式的熟练程度,属于基础题.18、(1)3;(2)-.【解析】(1)利用诱导公式化简求值即可;(2)应用同角三角函数的平方关系、商数关系,将目标式化简为sinα+cosα,再根据已知及与sinα+cosα的关系,求值即可.【详解】(1).(2)原式=-=-=-==sinα+cosα.∵sinαcosα=,且α是第三象限角,∴sinα+cosα=-=-=-=-19、(1);(2)5;(3)15.【解析】(1)根据题意,列出关于砍伐面积的百分比的方程,即可容易求得;(2)到今年为止,森林剩余面积为原来的,可列出关于m的等式,解之即可.(3)设从今年开始,最多还能砍伐年,列出相应表达式有,解不等式求出的范围即可【详解】(1)设每年砍伐的百分比为,则,即,,解得:所以每年砍伐面积的百分比为(2)设经过年剩余面积为原来,则,即又由(1)知,,,解得故到今年为止,该森林已被砍伐5年(3)设从今年开始,最多还能砍伐年,则年后剩余面积为.令,即,,,解得故今后最多还能砍伐15年【点睛】关键点点睛:本题考查指数型函数数学建模在实际问题中的应用,熟练运用指数性质运算,将文字语言转化成数学语言是解题的关键,考查学生的转化能力与运算能力,属于中档题.20、(1)(2)存在使得的最小值为0【解析】(1)利用偶函数的定义可得,化简可得对一切恒成立,进而求得的值;(2)由(1)知,,令,则,再分、、进行讨论即可得解【小问1详解】解:由函数是偶函数可知,,即,所以,即对一切恒成立,所以;【小问2详解】解:由(1)知,,,令,则,①当时,在上单调递增,故,不合题意;②当时,图象对称轴为,则在上单调递增,故,不合题意;③当时,图象对称轴为,当,即时,,令,解得,符合题意;当,即时,,令,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 如何跟踪和分析直播表现和数据
- 医院消防应急
- 2024年锡压延加工材合作协议书
- 县级安全检查汇报
- 学校承包农田合同范例
- 大米水果运输合同范例
- 山东药品食品职业学院《现代建筑赏析》2023-2024学年第一学期期末试卷
- 污泥处置租赁合同范例
- 体育培训兼职合同范例
- 临街网吧转让合同范例
- 《建筑施工技术》复习题及答案
- 美容用泥浆面膜产品市场需求分析报告
- 二年级上册美术第十三课《刷牙》市公开课一等奖省赛课获奖课件
- 人教版六上第二单元第四课时《金杯》《牧歌》教案
- DB5304T 090-2024 玉溪市鲜食玉米种植技术规程
- 泰国课件完整版本
- 2024至2030年中国江苏省物流行业市场运行现状及投资战略研究报告
- DL∕T 741-2019 架空输电线路运行规程
- 云贵川等地区 绿色食品肉鸡林下养殖规程
- SL 196-2015 水文调查规范
- 粮油配送服务方案
评论
0/150
提交评论