版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023-2024学年上海市静安区风华中学数学高一上期末质量跟踪监视试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.函数,则函数的零点个数为()A.2个 B.3个C.4个 D.5个2.已知偶函数在单调递减,则使得成立的的取值范围是A. B.C. D.3.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为的样本,其频率分布直方图如图所示,其中支出在元的同学有30人,则的值为A.300 B.200C.150 D.1004.函数的定义域为()A.B.且C.且D.5.已知,则()A. B.C.2 D.6.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若则 B.若则C.若则 D.若则7.设,,若,则ab的最小值是()A.5 B.9C.16 D.258.是边AB上的中点,记,,则向量A. B.C. D.9.已知扇形周长为,圆心角为,则扇形面积为()A. B.C. D.10.若函数的定义域是()A. B.C. D.11.已知一个样本容量为7的样本的平均数为5,方差为2,现样本加入新数据4,5,6,此时样本容量为10,若此时平均数为,方差为,则()A., B.,C., D.,12.已知函数满足,则()A. B.C. D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.若,,则______14.若,则的值为______15.已知角的终边过点(1,-2),则________16.计算:__________,__________三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数,(为常数).(1)当时,判断在的单调性,并用定义证明;(2)若对任意,不等式恒成立,求的取值范围;(3)讨论零点的个数.18.已知平面上点,且.(1)求;(2)若点,用基底表示.19.已知函数(1)试判断函数在区间上的单调性,并用函数单调性定义证明;(2)对任意时,都成立,求实数的取值范围20.已知全集,集合,(1)当时,求;(2)如果,求实数的取值范围21.某同学用“五点法”画函数在某一个周期内的图象时,列表并填入了部分数据,如下表:0x5020(1)请将表中数据补充完整,并直接写出函数的解析式;(2)将的图象向右平移3个单位,然后把曲线上各点的横坐标变为原来的倍(纵坐标不变),得到的图象.若关于x的方程在上有解,求实数a的取值范围22.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值
参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】函数h(x)=f(x)﹣log4x的零点个数⇔函数f(x)与函数y=log4x的图象交点个数.画出函数f(x)与函数y=log4x的图象(如上图),其中=的图像可以看出来,当x增加个单位,函数值变为原来的一半,即往右移个单位,函数值变为原来的一半;依次类推;根据图象可得函数f(x)与函数y=log4x的图象交点为5个∴函数h(x)=f(x)﹣log4x的零点个数为5个.故选D2、C【解析】∵函数为偶函数,∴∵函数在单调递减∴,即∴使得成立的的取值范围是故选C点睛:这个题目考查的是抽象函数的单调性和奇偶性,在不等式中的应用.解函数不等式:首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.3、D【解析】根据频率分布直方图的面积和1,可得的频率为P=1-10(0.01+0.024+0.036)=0.3,又由,解得.选D.4、C【解析】根据给定函数有意义直接列出不等式组,解不等式组作答.【详解】依题意,,解得且,所以的定义域为且.故选:C5、B【解析】先求出,再求出,最后可求.【详解】因为,故,因为,故,而,故,所以,故,所以,故选:B6、D【解析】A项,可能相交或异面,当时,存在,,故A项错误;B项,可能相交或垂直,当
时,存在,,故B项错误;C项,可能相交或垂直,当
时,存在,,故C项错误;D项,垂直于同一平面的两条直线相互平行,故D项正确,故选D.本题主要考查的是对线,面关系的理解以及对空间的想象能力.考点:直线与平面、平面与平面平行的判定与性质;直线与平面、平面与平面垂直的判定与性质.7、D【解析】结合基本不等式来求得的最小值.【详解】,,,,当且仅当时等号成立,由.故选:D8、C【解析】由题意得,∴.选C9、B【解析】周长为则,代入扇形弧长公式解得,代入扇形面积公式即可得解.【详解】由题意知,代入方程解得,所以故选:B【点睛】本题考查扇形的弧长、面积公式,属于基础题.10、C【解析】根据偶次根号下非负,分母不等于零求解即可.【详解】解:要使函数有意义,则需满足不等式,解得:且,故选:C11、B【解析】设这10个数据分别为:,进而根据题意求出和,进而再根据平均数和方差的定义求得答案.【详解】设这10个数据分别为:,根据题意,,所以,.故选:B.12、D【解析】由已知可得出,利用弦化切可得出关于的方程,结合可求得的值.【详解】因为,且,则,,可得,解得.故选:D二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】利用指数的运算性质可求得结果.【详解】由指数的运算性质可得.故答案为:.14、0【解析】由,得到∴sin∴2sin+4两边都除以,得:2tan故答案为015、【解析】由三角函数的定义以及诱导公式求解即可.【详解】的终边过点(1,-2),故答案为:16、①.0②.-2【解析】答案:0,三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)见解析;(2);(3)见解析.【解析】(1)利用函数的单调性的定义,即可证得函数的单调性,得到结论;(2)由得,转化为,设,利用二次函数的性质,即可求解.(3)把函数有个零点转化为方程有两个解,令,作的图像及直线图像,结合图象,即可求解,得到答案.【详解】(1)当时,且时,是单调递减的.证明:设,则又且,故当时,在上是单调递减的.(2)由得,变形为,即,设,令,则,由二次函数的性质,可得,所以,解得.(3)由有个零点可得有两个解,转化为方程有两个解,令,作的图像及直线图像有两个交点,由图像可得:i)当或,即或时,有个零点.ii)当或或时,由个零点;iii)当或时,有个零点.【点睛】本题主要考查了函数的单调性的判定,以及函数与方程的综合应用,其中解答中熟记函数的单调性的定义,以及合理分离参数和转化为图象的交点个数,结合图象求解是解答的关键,着重考查了转化思想,以及分类讨论思想的应用,试题有一定的综合性,属于中档试题.18、(1);(2)【解析】(1)设,根据向量相等的坐标表示可得答案;(2)设,建立方程,解之可得答案【详解】解:(1)设,由点,所以,又,所以,解得所以点,所以;(2)若点,所以,,设,即,解得所以用基底表示19、(1)在上单调递减,证明见解析;(2).【解析】(1)利用单调性定义:设并证明的大小关系即可.(2)由(1)及函数不等式恒成立可知:在已知区间上恒成立,即可求的取值范围【详解】(1)函数在区间上单调递减,以下证明:设,∵,∴,,,∴,∴在区间上单调递减;(2)由(2)可知在上单调减函数,∴当时,取得最小值,即,对任意时,都成立,只需成立,∴,解得:20、(1)或;(2)(-∞,2).【解析】先解出集合A(1)时,求出B,再求和;(2)把转化为,分和进行讨论.【详解】(1)当时,,∴∴或.(2)∵,∴.当时,有,解得:;当时,因为,只需,解得:;综上:,故实数的取值范围(-∞,2).【点睛】(1)集合的交并补运算:①离散型的数集用韦恩图;②连续型的数集用数轴;(2)由求参数的范围容易漏掉的情况21、(1)填表见解析;;(2).【解析】(1)利用正弦型函数的性质即得;(2)由题可得,利用正弦函数的性质可得,即得,即求.【小问1详解】0x2580200.【小问2详解】由题可得,∵,∴,∴,∴,所以,∴.22、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最值问题求解方法,分类讨
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 九年级上学期语文期末模拟考试试卷
- 售后服务部年终总结
- 一年级数学计算题专项练习集锦
- 二年级数学计算题专项练习1000题汇编
- 《数学物理方法》第1章测试题
- 母鸡孵蛋课件教学课件
- 南京航空航天大学《传感器与检测技术》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《土木工程制图》2021-2022学年第一学期期末试卷
- 南京工业大学浦江学院《商务礼仪》2022-2023学年第一学期期末试卷
- 淮河新城二期##楼工程施工组织设计
- 保持内心的冷静与淡定
- 焊接作业中的人体工程学设计
- 《南京财经大学》课件
- 农业机械自动化与智能化
- 人教部编版八年级语文上册-第六单元-基础知识专项训练(含答案)
- 八年级上学期校本课程教案
- 自然教育课程的追寻与实践
- 2024年云南烟草公司招聘笔试参考题库含答案解析
- 北师大版数学六年级上册单元真题拔高卷 第6单元《比的认识》(参考答案)
- 《学生心理健康教育》课件
- 2022年中国铁路太原局集团有限公司招聘考试真题
评论
0/150
提交评论