2023-2024学年巴中市重点中学高一上数学期末含解析_第1页
2023-2024学年巴中市重点中学高一上数学期末含解析_第2页
2023-2024学年巴中市重点中学高一上数学期末含解析_第3页
2023-2024学年巴中市重点中学高一上数学期末含解析_第4页
2023-2024学年巴中市重点中学高一上数学期末含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023-2024学年巴中市重点中学高一上数学期末注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,若,则x的取值范围为()A. B.C. D.2.方程的解所在的区间是()A. B.C. D.3.已知函数若关于的方程有6个根,则的取值范围为()A. B.C. D.4.中国宋代的数学家秦九韶曾提出“三斜求积术”,即假设在平面内有一个三角形,边长分别为,三角形的面积S可由公式求得,其中为三角形周长的一半,这个公式也被称为海伦----秦九韶公式,现有一个三角形的边长满足,则此三角形面积的最大值为()A.6 B.9C.12 D.185.=(

)A. B.C. D.6.在长方体中,,则异面直线与所成角的大小是A. B.C. D.7.已知命题p:“”,则为()A. B.C. D.8.设m、n是不同的直线,、、是不同的平面,有以下四个命题:(1)若、,则(2)若,,则(3)若、,则(4)若,,则其中真命题的序号是()A.(1)(4) B.(2)(3)C.(2)(4) D.(1)(3)9.若,,则()A. B.C. D.10.若角的终边经过点,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数fx=12.若向量,,且,则_____13.已知函数是定义在上的奇函数,当时的图象如下所示,那么的值域是_______14.当时,函数的值总大于,则的取值范围是________15.如图,在中,,以为圆心、为半径作圆弧交于点.若圆弧等分的面积,且弧度,则=________.16.若函数,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,,(1)求集合A,B及.(2)若,求实数a的取值范围.18.已知函数.(1)在平面直角坐标系中画出函数的图象;(不用列表,直接画出草图.(2)根据图象,直接写出函数的单调区间;(3)若关于的方程有四个解,求的取值范围19.某兴趣小组在研究性学习活动中,通过对某商店一种商品销售情况的调查发现:该商品在过去的一个月内(以天计)的日销售价格(元)与时间(天)的函数关系近似满足(为常数).该商品的日销售量(个)与时间(天)部分数据如下表所示:(天)(个)已知第天该商品日销售收入为元.(1)求出该函数和的解析式;(2)求该商品的日销售收入(元)的最小值.20.北京冬奥会计划于2022年2月4日开幕,随着冬奥会的临近,中国冰雪运动也快速发展,民众参与冰雪运动的热情不断高涨盛会的举行,不仅带动冰雪活动,更推动冰雪产业快速发展某冰雪产业器材厂商,生产某种产品的年固定成本为200万元,每生产千件,需另投入成本为(万元),其中与之间的关系为:通过市场分析,当每千件件产品售价为40万元时,该厂年内生产的商品能全部销售完若将产品单价定为400元(1)写出年利润(万元)关于年产量(千件)的函数解析式(2)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?21.某兴趣小组要测量钟楼的高度(单位:).如示意图,垂直放置的标杆的高度为,仰角.(1)该小组已测得一组的值,算出了,请据此算出的值(精确到);(2)该小组分析测得的数据后,认为适当调整标杆到钟楼的距离(单位:),使与之差较大,可以提高测量精度.若钟楼的实际高度为,试问为多少时,最大?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】首先判断函数的单调性和定义域,再解抽象不等式.【详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【点睛】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.2、B【解析】作差构造函数,利用零点存在定理进行求解.【详解】令,则,,因为,所以函数的零点所在的区间是,即方程的解所在的区间是.故选:B.3、B【解析】作出函数的图象,令,则原方程可化为在上有2个不相等的实根,再数形结合得解.【详解】作出函数的图象如图所示.令,则可化为,要使关于的方程有6个根,数形结合知需方程在上有2个不相等的实根,,不妨设,,则解得,故的取值范围为,故选B【点睛】形如的函数的零点问题与函数图象结合较为紧密,处理问题的基础和关键是作出,的图象.若已知零点个数求参数的范围,通常的做法是令,先估计关于的方程的解的个数,再根据的图象特点,观察直线与图象的交点个数,进而确定参数的范围4、C【解析】根据题意可得,代入面积公式,配方即可求出最大值.【详解】由,,则,所以,当时,取得最大值,此时.故选:C5、A【解析】由题意可得:.本题选择A选项6、C【解析】连接为异面直线与所成角,几何体是长方体,是,,异面直线与所成角的大小是,故选C.7、C【解析】根据命题的否定的定义判断【详解】特称命题的否定是全称命题命题p:“”,的否定为:故选:C8、D【解析】故选D.9、A【解析】由不等式的性质判断A、B、D的正误,应用特殊值法的情况判断C的正误.【详解】由,则,A正确;,B错误;,D错误.当时,,C错误;故选:A.10、C【解析】根据三角函数定义可得,判断符号即可.【详解】解:由三角函数的定义可知,符号不确定,,故选:C【点睛】任意角的三角函数值:(1)角与单位圆交点,则;(2)角终边任意一点,则.二、填空题:本大题共6小题,每小题5分,共30分。11、(0.+∞)【解析】函数定义域为R,∵3x>0∴3考点:函数单调性与值域12、6【解析】本题首先可通过题意得出向量以及向量的坐标表示和向量与向量之间的关系,然后通过向量平行的相关性质即可得出结果。【详解】因为,,且,所以,解得。【点睛】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量,,,则有,锻炼了学生对于向量公式的使用,是简单题。13、【解析】分析:通过图象可得时,函数的值域为,根据函数奇偶性的性质,确定函数的值域即可.详解:∵当时,函数单调递增,由图象知,当时,在,即此时函数也单调递增,且,∵函数是奇函数,∴,∴,即,∴的值域是,故答案为点睛:本题主要考查函数值域的求法,利用函数奇偶性的性质进行转化是解决本题的关键.14、或,【解析】由指数函数的图象和性质可得即可求解.【详解】因为时,函数的值总大于,根据指数函数的图象和性质可得,解得:或,故答案为:或,15、【解析】设扇形的半径为,则扇形的面积为,直角三角形中,,,面积为,由题意得,∴,∴,故答案为.点睛:本题考查扇形的面积公式及三角形的面积公式的应用,考查学生的计算能力,属于基础题;设出扇形的半径,求出扇形的面积,再在直角三角形中求出高,计算直角三角形的面积,由条件建立等式,解此等式求出与的关系,即可得出结论.16、##0.5【解析】首先计算,从而得到,即可得到答案.【详解】因为,所以.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】(1)解不等式得到集合,,进而可得;(2)先求,再根据得到,由此可解得实数的取值范围【详解】(1)∵,∴且,解得,故集合.∵,∴,解得,故集合.∴.(2)由()可得集合,集合,则.又集合,由得,解得,故实数的取值范围是18、(1)作图见解析;(2)增区间为和;减区间为和;(3).【解析】(1)化简函数的解析式为分段函数,结合二次函数的图象与性质,即可画出函数的图象;(2)由(1)中的图象,直接写出函数的单调区间;(3)把方程有四个解等价于函数与的图象有四个交点,利用函数的图象,即可求解.【详解】(1)由题意,函数,所以的图象如右图所示:(2)由(1)中的函数图象,可得函数的单调增区间为和,单调减区间为和.(3)由方程有四个解等价于函数与的图象有四个交点,又由函数的最小值为,结合图象可得,即实数的取值范围19、(1),(2)最小值为元【解析】(1)利用可求得的值,利用表格中的数据可得出关于、的方程组,可解得、的值,由此可得出函数和的解析式;(2)求出函数的解析式,利用基本不等式、函数单调性求得在且、且的最小值,比较大小后可得出结论.【小问1详解】解:依题意知第天该商品的日销售收入为,解得,所以,.由表格可知,解得.所以,.【小问2详解】解:由(1)知,当且时,,当且时,.,当时,由基本不等式可得,当且仅当时,等号成立,即.当时,因为函数、均为减函数,则函数为减函数,所以当时,取得最小值,且.综上所述,当时,取得最小值,且.故该商品的日销售收入的最小值为元.20、(1)(2)72【解析】(1)由题意可得,当且时,,当且时,,从而可求得结果,(2)根据已知条件,结合二次函数的性质,以及基本不等式即可求得答案【小问1详解】由题意得,当且时,,当且时,,所以小问2详解】当当且时,,所以当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论