版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省安阳市第三中学中考数学最后冲刺浓缩精华卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10-xA.平均数、中位数 B.众数、方差 C.平均数、方差 D.众数、中位数2.如果,那么的值为()A.1 B.2 C. D.3.如图,在矩形纸片ABCD中,已知AB=,BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D的过程中,则点F运动的路径长为()A.π B.π C.π D.π4.如图,△ABC中,AB>AC,∠CAD为△ABC的外角,观察图中尺规作图的痕迹,则下列结论错误的是()A.∠DAE=∠B B.∠EAC=∠C C.AE∥BC D.∠DAE=∠EAC5.如图,四边形ABCD内接于⊙O,若四边形ABCO是平行四边形,则∠ADC的大小为()A. B. C. D.6.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为()A.1 B.2 C.3 D.47.如图,长度为10m的木条,从两边各截取长度为xm的木条,若得到的三根木条能组成三角形,则x可以取的值为()A.2m B.m C.3m D.6m8.下列各组数中,互为相反数的是()A.﹣2与2 B.2与2 C.3与 D.3与39.实数的相反数是()A.- B. C. D.10.如图,若锐角△ABC内接于⊙O,点D在⊙O外(与点C在AB同侧),则∠C与∠D的大小关系为()A.∠C>∠D B.∠C<∠D C.∠C=∠D D.无法确定11.多项式4a﹣a3分解因式的结果是()A.a(4﹣a2)B.a(2﹣a)(2+a)C.a(a﹣2)(a+2)D.a(2﹣a)212.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1.若D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是A.3 B. C. D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,抛物线y=ax2+bx+c与x轴相交于A、B两点,点A在点B左侧,顶点在折线M﹣P﹣N上移动,它们的坐标分别为M(﹣1,4)、P(3,4)、N(3,1).若在抛物线移动过程中,点A横坐标的最小值为﹣3,则a﹣b+c的最小值是_____.14.如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部.将AF延长交边BC于点G.若,则(用含k的代数式表示).15.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为.16.函数y=中,自变量x的取值范围是17.已知一元二次方程2x2﹣5x+1=0的两根为m,n,则m2+n2=_____.18.如图,在Rt△ABC中,∠C=90°,AM是BC边上的中线,cos∠AMC,则tan∠B的值为__________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)为支援雅安灾区,某学校计划用“义捐义卖”活动中筹集的部分资金用于购买A,B两种型号的学习用品共1000件,已知A型学习用品的单价为20元,B型学习用品的单价为30元.若购买这批学习用品用了26000元,则购买A,B两种学习用品各多少件?若购买这批学习用品的钱不超过28000元,则最多购买B型学习用品多少件?20.(6分)如图,已知平行四边形OBDC的对角线相交于点E,其中O(0,0),B(3,4),C(m,0),反比例函数y=(k≠0)的图象经过点B.求反比例函数的解析式;若点E恰好落在反比例函数y=上,求平行四边形OBDC的面积.21.(6分)解分式方程:.22.(8分)化简分式,并从0、1、2、3这四个数中取一个合适的数作为x的值代入求值.23.(8分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;(2)求两次摸出的球上的数字和为偶数的概率.24.(10分)如图,六个完全相同的小长方形拼成了一个大长方形,AB是其中一个小长方形的对角线,请在大长方形中完成下列画图,要求:①仅用无刻度直尺,②保留必要的画图痕迹.在图1中画出一个45°角,使点A或点B是这个角的顶点,且AB为这个角的一边;在图2中画出线段AB的垂直平分线.25.(10分)某市为了解本地七年级学生寒假期间参加社会实践活动情况,随机抽查了部分七年级学生寒假参加社会实践活动的天数(“A﹣﹣﹣不超过5天”、“B﹣﹣﹣6天”、“C﹣﹣﹣7天”、“D﹣﹣﹣8天”、“E﹣﹣﹣9天及以上”),并将得到的数据绘制成如下两幅不完整的统计图.请根据以上的信息,回答下列问题:(1)补全扇形统计图和条形统计图;(2)所抽查学生参加社会实践活动天数的众数是(选填:A、B、C、D、E);(3)若该市七年级约有2000名学生,请你估计参加社会实践“活动天数不少于7天”的学生大约有多少人?26.(12分)计算:|﹣2|+8+(2017﹣π)0﹣4cos45°27.(12分)某地区教育部门为了解初中数学课堂中学生参与情况,并按“主动质疑、独立思考、专注听讲、讲解题目”四个项目进行评价.检测小组随机抽查部分学校若干名学生,并将抽查学生的课堂参与情况绘制成如图所示的扇形统计图和条形统计图(均不完整).请根据统计图中的信息解答下列问题:本次抽查的样本容量是
;在扇形统计图中,“主动质疑”对应的圆心角为
度;将条形统计图补充完整;如果该地区初中学生共有60000名,那么在课堂中能“独立思考”的学生约有多少人?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、D【解题分析】
由表易得x+(10-x)=10,所以总人数不变,14岁的人最多,众数不变,中位数也可以确定.【题目详解】∵年龄为15岁和16岁的同学人数之和为:x+(10-x)=10,∴由表中数据可知人数最多的是年龄为14岁的,共有15人,合唱团总人数为30人,∴合唱团成员的年龄的中位数是14,众数也是14,这两个统计量不会随着x的变化而变化.故选D.2、D【解题分析】
先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案.【题目详解】故选:D.【题目点拨】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.3、D【解题分析】
点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【题目详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长=.故选D.【题目点拨】本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.4、D【解题分析】
解:根据图中尺规作图的痕迹,可得∠DAE=∠B,故A选项正确,∴AE∥BC,故C选项正确,∴∠EAC=∠C,故B选项正确,∵AB>AC,∴∠C>∠B,∴∠CAE>∠DAE,故D选项错误,故选D.【题目点拨】本题考查作图—复杂作图;平行线的判定与性质;三角形的外角性质.5、C【解题分析】
根据平行四边形的性质和圆周角定理可得出答案.【题目详解】根据平行四边形的性质可知∠B=∠AOC,根据圆内接四边形的对角互补可知∠B+∠D=180°,根据圆周角定理可知∠D=∠AOC,因此∠B+∠D=∠AOC+∠AOC=180°,解得∠AOC=120°,因此∠ADC=60°.故选C【题目点拨】该题主要考查了圆周角定理及其应用问题;应牢固掌握该定理并能灵活运用.6、A【解题分析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质7、C【解题分析】
依据题意,三根木条的长度分别为xm,xm,(10-2x)m,在根据三角形的三边关系即可判断.【题目详解】解:由题意可知,三根木条的长度分别为xm,xm,(10-2x)m,∵三根木条要组成三角形,∴x-x<10-2x<x+x,解得:.故选择C.【题目点拨】本题主要考察了三角形三边的关系,关键是掌握三角形两边之和大于第三边,两边之差的绝对值小于第三边.8、A【解题分析】
根据只有符号不同的两数互为相反数,可直接判断.【题目详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【题目点拨】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.9、A【解题分析】
根据相反数的定义即可判断.【题目详解】实数的相反数是-故选A.【题目点拨】此题主要考查相反数的定义,解题的关键是熟知相反数的定义即可求解.10、A【解题分析】
直接利用圆周角定理结合三角形的外角的性质即可得.【题目详解】连接BE,如图所示:
∵∠ACB=∠AEB,
∠AEB>∠D,
∴∠C>∠D.
故选:A.【题目点拨】考查了圆周角定理以及三角形的外角,正确作出辅助线是解题关键.11、B【解题分析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【题目详解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故选:B.【题目点拨】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.12、B【解题分析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、﹣1.【解题分析】
由题意得:当顶点在M处,点A横坐标为-3,可以求出抛物线的a值;当顶点在N处时,y=a-b+c取得最小值,即可求解.【题目详解】解:由题意得:当顶点在M处,点A横坐标为-3,则抛物线的表达式为:y=a(x+1)2+4,将点A坐标(-3,0)代入上式得:0=a(-3+1)2+4,解得:a=-1,当x=-1时,y=a-b+c,顶点在N处时,y=a-b+c取得最小值,顶点在N处,抛物线的表达式为:y=-(x-3)2+1,当x=-1时,y=a-b+c=-(-1-3)2+1=-1,故答案为-1.【题目点拨】本题考查的是二次函数知识的综合运用,本题的核心是确定顶点在M、N处函数表达式,其中函数的a值始终不变.14、。【解题分析】试题分析:如图,连接EG,∵,∴设,则。∵点E是边CD的中点,∴。∵△ADE沿AE折叠后得到△AFE,∴。易证△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即。∴。∴(只取正值)。∴。15、1【解题分析】
设反比例函数解析式为y=,根据反比例函数图象上点的坐标特征得到k=3×(﹣4)=﹣2m,然后解关于m的方程即可.【题目详解】解:设反比例函数解析式为y=,根据题意得k=3×(﹣4)=﹣2m,解得m=1.故答案为1.考点:反比例函数图象上点的坐标特征.16、x≥0且x≠1【解题分析】试题分析:根据分式有意义的条件是分母不为0;分析原函数式可得关系式x-1≠0,解可得答案.试题解析:根据题意可得x-1≠0;解得x≠1;故答案为x≠1.考点:函数自变量的取值范围;分式有意义的条件.17、【解题分析】
先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可.【题目详解】由根与系数的关系得:m+n=,mn=,∴m2+n2=(m+n)2-2mn=()2-2×=,故答案为:.【题目点拨】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化.18、【解题分析】
根据cos∠AMC,设,,由勾股定理求出AC的长度,根据中线表达出BC即可求解.【题目详解】解:∵cos∠AMC,,设,,∴在Rt△ACM中,∵AM是BC边上的中线,∴BM=MC=3x,∴BC=6x,∴在Rt△ABC中,,故答案为:.【题目点拨】本题考查了锐角三角函数值的求解问题,解题的关键是熟记锐角三角函数的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)购买A型学习用品400件,B型学习用品600件.(2)最多购买B型学习用品1件【解题分析】
(1)设购买A型学习用品x件,B型学习用品y件,就有x+y=1000,20x+30y=26000,由这两个方程构成方程组求出其解就可以得出结论.(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,根据这批学习用品的钱不超过210元建立不等式求出其解即可.【题目详解】解:(1)设购买A型学习用品x件,B型学习用品y件,由题意,得,解得:.答:购买A型学习用品400件,B型学习用品600件.(2)设最多可以购买B型产品a件,则A型产品(1000﹣a)件,由题意,得20(1000﹣a)+30a≤210,解得:a≤1.答:最多购买B型学习用品1件20、(1)y=;(2)1;【解题分析】
(1)把点B的坐标代入反比例解析式求得k值,即可求得反比例函数的解析式;(2)根据点B(3,4)、C(m,0)的坐标求得边BC的中点E坐标为(,2),将点E的坐标代入反比例函数的解析式求得m的值,根据平行四边形的面积公式即可求解.【题目详解】(1)把B坐标代入反比例解析式得:k=12,则反比例函数解析式为y=;(2)∵B(3,4),C(m,0),∴边BC的中点E坐标为(,2),将点E的坐标代入反比例函数得2=,解得:m=9,则平行四边形OBCD的面积=9×4=1.【题目点拨】本题为反比例函数的综合应用,考查的知识点有待定系数法、平行四边形的性质、中点的求法.在(1)中注意待定系数法的应用,在(2)中用m表示出E点的坐标是解题的关键.21、.【解题分析】试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.考点:解分式方程.22、x取0时,为1或x取1时,为2【解题分析】试题分析:利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.试题解析:解:原式=[]===x+1,∵x1-4≠0,x-2≠0,∴x≠1且x≠-1且x≠2,当x=0时,原式=1.或当x=1时,原式=2.23、(1)画树状图得:则共有9种等可能的结果;(2)两次摸出的球上的数字和为偶数的概率为:.【解题分析】试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有9种等可能的结果;(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,∴两次摸出的球上的数字和为偶数的概率为:59考点:列表法与树状图法.24、(1)答案见解析;(2)答案见解析.【解题分析】试题分析:(1)根据等腰直角三角形的性质即可解决问题.(2)根据正方形、长方形的性质对角线相等且互相平分,即可解决问题.试题解析:(1)如图所示,∠ABC=45°.(AB、AC是小长方形的对角线).(2)线段AB的垂直平分线如图所示,点M是长方形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 车载电源行业相关投资计划提议
- 锡及锡合金材相关行业投资方案
- 柴油发动机电控装置相关行业投资规划报告范本
- 电视内镜手术系统相关行业投资方案范本
- 中小学课程改革线上实施方案
- 家居行业库存与物流方案
- 2024宠物店寄养专属协议
- 2024年郑州驾驶员客运从业资格证模拟考试题库及答案
- 2024年衢州小型客运从业资格证理论考试答案
- 2024年农产品购销合同样本:柑橘类
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 中医师承跟师笔记50篇
- 沪教版四年级上册期中复习数学试卷(一)
- 雕塑采购投标方案(技术标)
- 人教版八年级物理上册全知识点大全
- 破产管理人报酬计算器
- 国家生态环境建设项目管理办法
- 秦腔传统剧《草坡面理》
- 直流电机设计参数计算
- 核心素养下小学语文教学策略探究
- 室外球墨铸铁管施工方案
评论
0/150
提交评论