江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷含解析_第1页
江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷含解析_第2页
江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷含解析_第3页
江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷含解析_第4页
江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省扬州市江都市第三中学2024届中考数学最后冲刺模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=()A.15° B.30° C.45° D.60°2.下列各数中,最小的数是A. B. C.0 D.3.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是A. B. C. D.4.关于x的不等式组的所有整数解是()A.0,1 B.﹣1,0,1 C.0,1,2 D.﹣2,0,1,25.下列运算正确的是()A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a46.“a是实数,”这一事件是()A.不可能事件 B.不确定事件 C.随机事件 D.必然事件7.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为()A.2 B.﹣2 C.4 D.﹣48.如图,在中,,将折叠,使点落在边上的点处,为折痕,若,则的值为()A. B. C. D.9.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于()A.30° B.35° C.40° D.50°10.为了支援地震灾区同学,某校开展捐书活动,九(1)班40名同学积极参与.现将捐书数量绘制成频数分布直方图如图所示,则捐书数量在5.5~6.5组别的频率是()A.0.1 B.0.2C.0.3 D.0.4二、填空题(共7小题,每小题3分,满分21分)11.实数,﹣3,,,0中的无理数是_____.12.关于的方程有增根,则______.13.如图,AB是⊙O的直径,CD是⊙O的弦,∠BAD=60°,则∠ACD=_____°.14.对于实数,我们用符号表示两数中较小的数,如.因此,________;若,则________.15.不等式组的解集为________.16.在实数范围内分解因式:x2y﹣2y=_____.17.如图,长方形纸片ABCD中,AB=4,BC=6,将△ABC沿AC折叠,使点B落在点E处,CE交AD于点F,则△AFC的面积等于___.三、解答题(共7小题,满分69分)18.(10分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.(1)求甲种树和乙种树的单价;(2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.19.(5分)计算:﹣3tan30°.20.(8分)为改善生态环境,防止水土流失,某村计划在荒坡上种1000棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前5天完成任务,原计划每天种多少棵树?21.(10分)问题探究(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为;(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;问题解决(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.22.(10分)小晗家客厅装有一种三位单极开关,分别控制着A(楼梯)、B(客厅)、C(走廊)三盏电灯,在正常情况下,小晗按下任意一个开关均可打开对应的一盏电灯,既可三盏、两盏齐开,也可分别单盏开.因刚搬进新房不久,不熟悉情况.若小晗任意按下一个开关,正好楼梯灯亮的概率是多少?若任意按下一个开关后,再按下另两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图或列表法加以说明.23.(12分)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.求证:∠C=90°;当BC=3,sinA=时,求AF的长.24.(14分)已知,抛物线L:y=x2+bx+c与x轴交于点A和点B(-3,0),与y轴交于点C(0,3).(1)求抛物线L的顶点坐标和A点坐标.(2)如何平移抛物线L得到抛物线L1,使得平移后的抛物线L1的顶点与抛物线L的顶点关于原点对称?(3)将抛物线L平移,使其经过点C得到抛物线L2,点P(m,n)(m>0)是抛物线L2上的一点,是否存在点P,使得△PAC为等腰直角三角形,若存在,请直接写出抛物线L2的表达式,若不存在,请说明理由.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】

根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.【题目详解】解:∵OA=AB,OA=OB,∴△AOB是等边三角形,∴∠AOB=60°,∴∠ACB=30°,故选B.【题目点拨】本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.2、A【解题分析】

应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【题目详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【题目点拨】此题考负数的大小比较,应理解数字大的负数反而小.3、B【解题分析】

主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形.【题目详解】解:A、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误.故选:B.【题目点拨】本题重点考查三视图的定义以及考查学生的空间想象能力.4、B【解题分析】

分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,据此即可得出答案.【题目详解】解不等式﹣2x<4,得:x>﹣2,解不等式3x﹣5<1,得:x<2,则不等式组的解集为﹣2<x<2,所以不等式组的整数解为﹣1、0、1,故选:B.【题目点拨】考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.5、D【解题分析】

各项计算得到结果,即可作出判断.【题目详解】A、原式=a5,不符合题意;B、原式=x9,不符合题意;C、原式=2x5,不符合题意;D、原式=-a4,符合题意,故选D.【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.6、D【解题分析】是实数,||一定大于等于0,是必然事件,故选D.7、D【解题分析】

首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值【题目详解】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,

∴∠ACO=∠ODB=90°,

∴∠OBD+∠BOD=90°,

∵∠AOB=90°,

∴∠BOD+∠AOC=90°,

∴∠OBD=∠AOC,

∴△OBD∽△AOC,

又∵∠AOB=90°,tan∠BAO=,

∴=,

∴=,即,

解得k=±4,

又∵k<0,

∴k=-4,

故选:D.【题目点拨】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。8、B【解题分析】

根据折叠的性质可知AE=DE=3,然后根据勾股定理求CD的长,然后利用正弦公式进行计算即可.【题目详解】解:由折叠性质可知:AE=DE=3∴CE=AC-AE=4-3=1在Rt△CED中,CD=故选:B【题目点拨】本题考查折叠的性质,勾股定理解直角三角形及正弦的求法,掌握公式正确计算是本题的解题关键.9、C【解题分析】分析:欲求∠B的度数,需求出同弧所对的圆周角∠C的度数;△APC中,已知了∠A及外角∠APD的度数,即可由三角形的外角性质求出∠C的度数,由此得解.解答:解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD-∠A=40°;∴∠B=∠C=40°;故选C.10、B【解题分析】∵在5.5~6.5组别的频数是8,总数是40,∴=0.1.故选B.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】

无理数包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数,根据以上内容判断即可.【题目详解】解:=4,是有理数,﹣3、、0都是有理数,是无理数.故答案为:.【题目点拨】本题考查了对无理数的定义的理解和运用,注意:无理数是指无限不循环小数,包括三方面的数:①含π的,②一些开方开不尽的根式,③一些有规律的数.12、-1【解题分析】根据分式方程-1=0有增根,可知x-1=0,解得x=1,然后把分式方程化为整式方程为:ax+1-(x-1)=0,代入x=1可求得a=-1.故答案为-1.点睛:此题主要考查了分式方程的增根问题,解题关键是明确增根出现的原因,把增根代入最简公分母即可求得增根,然后把它代入所化为的整式方程即可求出未知系数.13、1【解题分析】

连接BD.根据圆周角定理可得.【题目详解】解:如图,连接BD.∵AB是⊙O的直径,∴∠ADB=90°,∴∠B=90°﹣∠DAB=1°,∴∠ACD=∠B=1°,故答案为1.【题目点拨】考核知识点:圆周角定理.理解定义是关键.14、2或-1.【解题分析】①∵--,∴min{-,-}=-;②∵min{(x−1)2,x2}=1,∴当x>0.5时,(x−1)2=1,∴x−1=±1,∴x−1=1,x−1=−1,解得:x1=2,x2=0(不合题意,舍去),当x⩽0.5时,x2=1,解得:x1=1(不合题意,舍去),x2=−1,15、x>1【解题分析】

分别求出两个不等式的解集,再求其公共解集.【题目详解】,解不等式①,得:x>1,解不等式②,得:x>-3,所以不等式组的解集为:x>1,故答案为:x>1.【题目点拨】本题考查一元一次不等式组的解法,属于基础题.求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.16、y(x+)(x﹣)【解题分析】

先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【题目详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为y(x+)(x-).【题目点拨】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.17、【解题分析】

由矩形的性质可得AB=CD=4,BC=AD=6,AD//BC,由平行线的性质和折叠的性质可得∠DAC=∠ACE,可得AF=CF,由勾股定理可求AF的长,即可求△AFC的面积.【题目详解】解:四边形ABCD是矩形,,,折叠,在中,,,.故答案为:.【题目点拨】本题考查了翻折变换,矩形的性质,勾股定理,利用勾股定理求AF的长是本题的关键.三、解答题(共7小题,满分69分)18、(1)甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)当购买1棵甲种树、133棵乙种树时,购买费用最低,理由见解析.【解题分析】

(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据“购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元”,即可得出关于x、y的二元一次方程组,解之即可得出结论;

(2)设购买甲种树a棵,则购买乙种树(200-a)棵,根据甲种树的数量不少于乙种树的数量的可得出关于a的一元一次不等式,解之即可得出a的取值范围,再由甲种树的单价比乙种树的单价贵,即可找出最省钱的购买方案.【题目详解】解:(1)设甲种树的单价为x元/棵,乙种树的单价为y元/棵,根据题意得:

,解得:答:甲种树的单价为50元/棵,乙种树的单价为40元/棵.(2)设购买甲种树a棵,则购买乙种树(200﹣a)棵,根据题意得:解得:∵a为整数,∴a≥1.∵甲种树的单价比乙种树的单价贵,∴当购买1棵甲种树、133棵乙种树时,购买费用最低.【题目点拨】一元一次不等式的应用,二元一次方程组的应用,读懂题目,是解题的关键.19、1.【解题分析】

直接利用零指数幂的性质、绝对值的性质和负整数指数幂的性质及特殊角三角函数值分别化简得出答案.【题目详解】﹣3tan30°=4+﹣1﹣1﹣3×=1.【题目点拨】此题主要考查了实数运算及特殊角三角函数值,正确化简各数是解题关键.20、原计划每天种树40棵.【解题分析】

设原计划每天种树x棵,实际每天植树(1+25%)x棵,根据实际完成的天数比计划少5天为等量关系建立方程求出其解即可.【题目详解】设原计划每天种树x棵,实际每天植树(1+25%)x棵,由题意,得−=5,解得:x=40,经检验,x=40是原方程的解.答:原计划每天种树40棵.21、(1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.【解题分析】

(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.【题目详解】(1)如图①,延长CD至G,使得DG=BE,∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,∴△ABE≌△ADG,∴AE=AG,∠BAE=∠DAG,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,又∵AF=AF,∴△AEF≌△AEG,∴EF=GF=DG+DF=BE+DF,故答案为:BE+DF=EF;(2)存在.在等边三角形ABC中,AB=BC,∠ABC=60°,如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,∴△DBE是等边三角形,∴DE=BD,∴在△DCE中,DE<DC+CE=4+2=6,∴当D、C、E三点共线时,DE存在最大值,且最大值为6,∴BD的最大值为6;(3)存在.如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,∵AB=BD,∠ABC=∠DBE,BC=BE,∴△ABC≌△DBE,∴DE=AC,∵在等边三角形BCE中,EF⊥BC,∴BF=BC=2,∴EF=BF=×2=2,以BC为直径作⊙F,则点D在⊙F上,连接DF,∴DF=BC=×4=2,∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.【题目点拨】本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.22、(1);(2).【解题分析】试题分析:(1)、3个等只有一个控制楼梯,则概率就是1÷3;(2)、根据题意画出树状图,然后根据概率的计算法则得出概率.试题解析:(1)、小晗任意按下一个开关,正好楼梯灯亮的概率是:(2)、画树状图得:结果:(A,B)、(A,C)、(B,A)、(B,C)、(C,A)、(C,B)∵共有6种等可能的结果,正好客厅灯和走廊灯同时亮的有2种情况,∴正好客厅灯和走廊灯同时亮的概率是=.考点:概率的计算.23、(1)见解析(2)【解题分析】

(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论