版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
FundedbytheEuropeanUnion
UANTUM
FLACSHIP
European
CompetenceFramework
forQuantumTechnologies
compiledbyFranziskaGreinertandRainerMüller,
supportedbySimonGoorney,RiccardoLaurenza,
JacobShersonandMalteUbben
Version2.0(April2023)
Quantumbackground
Coredevicetechnologies
QTsystemsandapplications
ENABLINGTECHNOLO-GIESANDTECHNIQUES
Laboratorytechniques,
noiseandshielding
Solid-statetechnologies,
nanotechnologies
Opticaltechnologies
Controltechnologies
Computersandsoftware
QUANTUMHARDWARE
Superconductingelectroniccircuits
Spin-basedsystems
Neutralatomsandions
Photonicsystems
Emergingqubitconcepts
Quantumstatecontrol
Hybridquantum-classicalsystems
Technologyrealisation
3
3.1
3.2
3.3
3.4
3.5
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
EuropeanCompetenceFrameworkforQuantumTechnologiesOverview–Version2.0
PHYSICALFOUNDATIONS
OFQUANTUMTECHNOLOGIES
Atomicphysics
Quantumopticsandelectrodynamics
Solid-statephysic
Quantummany-bodysystemsandopenquantumsystems
CONCEPTS
ANDFOUNDATIONS
Basicquantumconcepts
Mathematicalformalismandinformationtheory
2
2.1
2.2
2.3
2.4
1
1.1
1.2
QUANTUMCOMMUNICATIONANDNETWORKS
Basics
Quantumrandomnumber
generators
Quantumkeydistribution
Applicationsofquantum
cryptography
Infrastructureforquantuminforma-tionnetworks(quantuminternet)
Systemsnetworks(compositesys-tems),quantuminternetapplications
VALORISATION
Industrylandscapeandmarketanalysis
Businessstrategy,entrepreneurshipandmanagement
Impact
Responsibilityandawareness
QUANTUMCOMPUTINGANDSIMULATION
Basics
Quantumsimulators
Quantumprogrammingtoolsandsoftwarestack,errorcorrection
Quantumcomputing
subroutines
Quantumalgorithms
Applicationsofquantumcomputingandsimulation
QUANTUMSENSORS
ANDIMAGINGSYSTEMS
Basics
Electromagneticfield
sensors
Temperature,particleandpressuresensors
Inertialandgravitysensors
Quantumimaging
Atomicclocks
Applicationsofquantumsensors
5
5.1
5.2
5.3
5.4
5.5
5.6
6
6.1
6.2
6.3
6.4
6.5
6.6
6.7
7
7.1
7.2
7.3
7.4
7.5
7.6
8
8.1
8.2
8.3
8.4
Version2.0(April2023)compiledbyFranziskaGreinertandRainerMüller,supportedbySimonGoorney,RiccardoLaurenza,JacobShersonandMalteUbbenQUCATS–QuantumFlagshipCoordinationAcTionandSupport
Coverphoto:©Siarhei–
2
BASICQUANTUMCONCEPTS
MATHEMATICALFORMALISMANDINFORMATIONTHEORY
subdomain
BASICQUANTUMCONCEPTS
topic
subtopic
Probabilisticnatureofquantumphysics
Measurementdynam-ics(statereduction)
No-cloningtheorem,incompletestate
informationfrom
measurement
HowtousetheCompetenceFramework
TheEuropeanCompetenceFrameworkforQuantumTechnologiesaimstomapthelandscapeofpossibleknowledgeandskillsinQuantumTechnologies.IthasbeencompiledintheQuantumFlag-shipCSAs(QTEdu,QUCATS)inordertofacilitatetheplanninganddesignofeducationandtrainingprojectsinQuantumTechnologies.
TheCompetenceFrameworkconsistsofeightdomains.Theyout-linethebroadstructureofQuantumTechnologies:
1CONCEPTSANDFOUNDATIONS
Eachoftheseeightdomainshasseveralsubdomains,e.g.
1.1
1.2
Onthefirstpageofthisdocument,theoverviewofthedomainsandsubdomainsisshowninagraphicalscheme.Foreachdomainthereisanextrapagewithmoredetails:
1.1
Stationarystates,
energyquantisation,wells
Superposition,
interference
Unitarytimeevolution,Schrödingerequation,tunneling
Quantummeasure-ment
Dependingonthetargetaudience,eacheducationalofferwillad-dressdifferentlevelsofdepthanddifficulty.Toreflectthis,thereisanadditionaldimensiontotheCompetenceFrameworkthatisnotshownintheoverviewgraphic.Foreachentry,aproficiencylevelcanbespecified:fromA1(Awareness)toC2(Innovation).Theuseofproficiencylevelsmakesiteasiertotailoreducationandtrainingofferstotheneedsofthetargetgroups.Newinversion2.0areextendeddescriptionsoftheselevelsadaptingtheEuro-peanQualificationFrameworklevels,seep.5.
A1AwarenessA2Exploration
B1AdaptationB2Expertise C1SpecialisationC2Innovation
Inaddition,thenewp.4explainstheoverallstructurebydescrib-ingthethreelargerblocksoftwoorfourdomains,supplementedbykeyskillsfortheblocks.
TheCompetenceFrameworkhasbeencompiledusingabot-tom-upapproach.Betweensummer2020andspring2021,athree-roundstudywithover150participantsfromtheQTcommunityprovidedinitialinput(seepaperTheFutureQuan-tumWorkforce:Competences,RequirementsandForecasts,tobepublishedinPhys.Rev.Phys.Educ.Res.,preprintondoi:arXiv:2208.08249).Theresultswererefinedthroughexpertinter-viewsforeachdomain,leadingtoversion1.0fromMay2021.DetailsaredocumentedintheMethodologyandVersionHistory(2021,doi:10.2759/130432).Forthecurrentversion2.0,feed-backandusageexperienceshavebeenincorporated,andeventshavebeenconductedtoinvolvethecommunity.
QuantumTechnologiesarerapidlyevolving.Newtechnologieswillbedeveloped,otherswillbecomelessimportant.TheCompetenceFrameworkwillhavetobeadaptedaccordingly.Thus,theCom-petenceFrameworkisalivingdocumentthatwillbeupdatedinregularintervals.Suggestionsforadditionsandcorrectionsarewelcomeatanytime.
Pleasecontact:
FranziskaGreinert,f.greinert@tu-braunschweig.de
QUCATS–QuantumFlagshipCoordinationAcTionandSupport
Version1.0ofthisframeworkhasbeencompiledaspartofaprojectthathasre-ceivedfundingfromtheEuropeanUnion’sHorizon2020researchandinnovationprogrammeundergrantagreementNo951787.ItsfurtherdevelopmentispartofaprojectthathasreceivedfundingfromtheEuropeanUnion’sHorizonEuroperesearchandinnovationprogrammeundergrantagreementNo101070193.
Thispublicationreflectsonlytheviewsoftheauthors,theEuropeanCommissionisnotresponsibleforanyusethatmaybemadeoftheinformationitcontains.
Howtocite:
F.GreinertandR.Müller,EuropeanCompetenceFrameworkforQuantumTechnolo-gies,doi:10.5281/zenodo.6834598(2023),version2.0
©EuropeanUnion,2023
ThereusepolicyofEuropeanCommissiondocumentsisimplementedbyCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).
Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CC-BY4.0)licence(https://creativecommons.org/licenses/by/4.0/).Thismeansthatreuseisallowed,providedappropriatecreditisgivenandanychangesareindicated.
3
Quantumbackground
technologies
andapplications
Coredevice
QTsystems
NewinVersion2.0
QTsystemsandapplications
Thesedomainscovertherangeoffullquantumtechnology(QT)systemsandtheirapplications.EachofthethreemainQTpillarshasadedicat-eddomain,namelyq.computingandsimulation(domain5),q.sensorsandimagingsystems(6)andq.communicationandnetworks(7).Eachofthesedomainsstartswithdomain-specificfoundations(5.1,6.1,7.1),followedbydevicesorprocessessuchaskeydistributionorquantumprogramming.Theyendwithapplicationareasandexampleusecases(5.6,6.7,7.4and7.6).Domain7hasaspecialtwo-partstructure,with7.2to7.4onquantumcryptographyand7.5and7.6onquantumnetworks.Inaddition,domain8coversthegeneralbusinessperspective,with
From
component
toapplica-tion
impactandlandscape,aswellasaddressingresponsibilityandawarenessraising.
Keyskills
Use:Operateadeviceorrunanalgorithmandanalyse/interpretdataincontextoftheusecase.Identifyusecases,createvalue:Identifypoten-tialusecases,analyseadvantagesandpossibili-tiestocreateindustrialvalue.
Translateusecases:Translatereal-worldusecaseintoapplicationrequirements.
Adaptation/implementation:Compareandchoosefromdifferentapproaches,adaptorcom-binethesedependingontheusecase.
Keyskills
Manufacturing:Technical/mechanicalskillstobuild/assemblehardware.
Hardware:Laboratorytechniques(labskills),componentorsystemimprovement,testingandmaintenance.
Software:Coding/programming(classical),dataprocessingandanalysis,interpretation.
Technologyrealisation:Requirementsdefinition,planning,integrationofquantumhardwareplat-formswithcontroltechnologies,software,etc.intoQTsystems.
Overallstructure:
Threeblockswithdescriptionsandkeyskills
Quantumbackground
Thequantumbackgroundcoversthebasicconcepts(subdomain1.1)thatarerelevantforthephenomenologicalunderstanding(“awareness”)ofthebasicideaofquantumtechnologies,theiradvancesandchallengescomparedtoclassicaltechnologies.Subdomain1.1alsocoversadvancedconceptsthatformthecommonbasisforthequantumphysicalfoundations(domain2).Similarly,subdomain1.2coversbothbasicmathematicalconceptsandhighermathematicsfordomain2thatarerelevantfordescribingtheconceptsandfunctionalityofQTorforcomputingorpredictingapplicationsaswellasinformationtheoryfoun-dations.Thephysicalfoundationsaredividedintofoursubdomainsinwhichonecouldspecialise,includingtheoriesandeffects,strategiesandkeyexperiments.
Keyskills
Communicate/explain:Abilitytoexplainconcepts,phenomena,etc.andtocommunicateaboutquantum.
Mathematics:Describequantumphenomena/conceptsandunderlyingphysicswithmathematicsandusemathematicstocal-culate/computeandpredictapplications.
Theoreticalphysics:Understandordevelopnewapproaches,identifypotentialforadvances.
Experiments:Planandprepareexperiments,conductexperimentsanddocumentandevaluateresults.
Background
Coredevicetechnologies
Thisblockcoversthetechnicalfoundationsforbuildingacompletequantumtechnologysystem.Thecoreofthesesystems,thedifferenthard-wareplatformsfortheuseofindividualquantumobjects(subdomains4.1to4.5)andthedirectcontrolofthesephysicalqubits(4.6)arelocatedinthequantumhardware(domain4).Theena-blingtechnologies,i.e.thecomponentsaroundthequantumcoretobuildthecompleteQTsys-temandtherelatedtechniquesarecoveredindomain3,includingsoftwaredevelopment(3.5)tocontrolthehardware.Inaddition,theintegra-tionintohybridsystems(4.7)andthetechnolog-icalrealisation(4.8)arecovered.
Supplychain
Selection,
consultancy
Systemsassembly
Development
Adaptation
End-user
Component
supplier
4
NewinVersion2.0
Proficiencylevelswithexamples
A1
B1
C1
Awareness(afewhours)
Basicidea,overviewofpossibilitiesandlimitations,
reproducesolutions,operateadeviceorrunanalgorithm.
Adaptation(fewweekscourse)
Specialisedknowledgeinasubdomain,awarenessofitsboundaries,explaincomplexfunctionalities,adapt
approachesforconcretesettings.
Specialisation(longerresearchproject)
Highlyspecialisedknowledge,criticalawarenessof
interconnections,newsolutionsandmethods,combineandintegrateapproaches.
A2
B2
C2
Exploration(afewdays)
Knowledgeoffundamentalsorlandscapeofapproaches,describefunctionalities,readandinterpretanalgorithmoradescription.
Expertise(shortresearchproject)
Advancedknowledge,criticalperspectives,assessment
ofconsequences,adaptordevelopsolutionsforreal-worldusecases,identifypossibleusecases.
Innovation(long-yearexperiencewithR&D)
Mostadvancedknowledge,interconnections,developinnovativesolutions,evaluateandassess,extendandredefineprofessionalpractice.
Proficiencylevels(generaldescriptions,longformat)
withK:Knowledge,S:Skills(abilitytodosomething)
A1Awareness(uptoafewhoursofinstructionorself-study)
K:Basicidea(phenomena-oriented)ofrelatedconceptsandfunctionali-ties,knowbasicvocabulary,overviewofpossibilities,challengesandlimi-tations.
S:Abilitytoreproducesolutionsforsmallproblems,operateadeviceorrunanalgorithmafterinstruction.
A2Exploration(uptoafewdaysofinstructionorself-study)
K:Knowledgeoffundamentalformalismand(working)principles,orland-scapeofapproaches/products/usecases.
S:Abilitytodescribefunctionalitieswithphysicalandmathematicalcon-cepts,readandinterpretanalgorithmorprocessdescription,identifywhichapproachtouseinwhichsituation.
B1Adaptation(e.g.throughasemester-longlecturewithpracticaltasks,homeworkand/orlaboratorycourse;afewweeksofsummerschool)
K:Knowledgeofavarietyofapproaches,specialisedknowledgeinase-lectedsubdomain,awarenessoftheboundariesofthisknowledge.
S:Abilitytoexplaincomplexfunctionalities,adaptapproachesforconcretesettings.
B2Expertise(e.g.throughashortresearchprojectasforabachelorthesis,internshipwithproject)
K:Advancedknowledgeoftheories,approachesandmethodsandtheirvalidity,includingcriticalperspectives,andassessmentofconsequences.
S:Abilitytoadaptordevelopsolutionsforcomplexandunpredictableproblemsandforreal-worldusecaseswithstate-of-the-arttechnologies,identifypossibleusecasesandadvances.
C1Specialisation(e.g.throughalongerresearchprojectsuchasforaMaster’sthesis,alongerinternshiporworkexperiencewithanR&Dproject)
K:Highlyspecialisedknowledgeinonesubdomainandcriticalawarenessofinterconnectionsbetweendifferent(sub-)domains.
S:Abilitytofindordevelopinnovativesolutionsfornewproblemsorusecases,generatenewmethods,combineandintegrateapproachesandsolutionsfromdifferent(sub-)domains.
C2Innovation(e.g.throughalongresearchprojectsuchasaPhDthesis,long-termworkexperienceinanR&Dproject)
K:Mostadvancedknowledgeinthesubdomainandoninterconnectionswithdifferentapproachesand(sub-)domains.
S:Abilitytofindordevelopinnovativesolutionsforcriticalproblemsorusecases,evaluateandassesssolutions,extendandredefineknowledgeorprofessionalpractice.
Examplesforproficiencylevels
withK:Knowledge,S:Skills(abilitytodosomething)
A1Awarenessinconceptsandfoundations(1)
K:Basicidea(phenomena-oriented)ofthefundamentalquantumconceptsandvocabularysuchassuperpositionandentanglement,challengesinmeasurementandthroughdecoherence,andbasicmathematicalnotationofquantumstates.
S:AbilitytoexplainthebasicideaofaQTanditspotential.
A2Explorationinquantumcomputing(5)
K:Knowledgeofqubitconceptsandcorrespondingformalism(5.1),over-viewofthealgorithmlandscape(5.5).
S:Abilitytoreadandinterpretanalgorithm(5.3),identifywhichcomputa-tionalapproach(5.5)maybringadvantageforwhichusecase(5.6).
B1Adaptationinquantumsensing:gravity(6.4)
K:Knowledgeofavarietyofquantumsensingdevices(6.2–6.6),special-isedknowledgeaboutquantumgravitysensors(6.4)withcurrentandpo-tentialusecasesandchallenges(from6.7).
S:Abilitytoadaptasensingdevicetoaconcreteusecase,suchasmappingarchaeologicalstructures(6.7.c).
B2Expertiseinquantumcommunication:QKD(7.3)
K:AdvancedknowledgeofQKDprotocols(7.3),includingcriticalperspec-tivesandassessmentofapproaches,e.g.regardingsecurityproofsandconsequencesforimplementation.
S:AbilitytoadaptaQKDsetupforanewusecase,e.g.foravotingproce-dureandassociateddatatransmission,selectthestate-of-the-arttechnol-ogiestobeused;identifypotentialnewusecaseswherethisapproachcanalsobringadvantages.
C1Specialisationinenablingtechnologies:opticaltechnologies(3.3)
K:Highlyspecialisedknowledgeinthefieldofopticaltechnologies(3.3)andcriticalawarenessofinterconnectionswithothertechnologyfieldslikesolid-statetechnologies(3.2)andcontroltechnologies(3.4).
S:Abilitytodevelopinnovativehardwaresystemscombiningcomponentsandcontrolhardware,generatenewmethodstointegrateopticalcompo-nentswithotherhardwarecomponents.
C2Innovationinquantumhardware:superconductingcircuits(7.1)
K:Mostadvancedknowledgeonsuperconductingelectroniccircuits(4.1)andtheiruseasqubitsforquantumcomputingincombinationwithqubitcontrol(4.6)andothertechnologies(3),includingchallengesandstepsto-wardstechnologyrealisation(4.8).
S:Abilitytodevelopinnovativesolutionsforscalableandfault-tolerantqubits,evaluateandassessdifferentapproaches,extendandredefinepro-fessionalpracticewithnewandsuccessfulsolutions.
References:
Proficiencylevelsystem:LevelA1toC2likeintheCommonEuropeanFrameworkofReferenceforLanguages(CEFR,2020,2001,/lang-cefr),whichhasbeenusedintheEuropeanFrameworkfortheDigitalCompetenceofEducators(DigCompEdu,2017,doi:10.2760/159770),thetemplatefortheframeworkstructureandlevelkeywords.
ProficiencyleveldescriptionsarebasedonthelevelsfromTheEuropeanQualificationsFramework(EQF,2018.doi:10.2767/750617).
5
1.1
Stationarystates,
energyquantisation,wells
Superposition,
interference
Unitarytimeevolution,Schrödingerequation,tunneling
Quantummeasure-ment
Probabilisticnatureofquantumphysics
Measurementdynam-ics(statereduction)
No-cloningtheorem,incompletestate
informationfrom
measurement
Staterepresentation,visualisation(e.g.
Bloch/Poincarésphere)
Dynamicsof
two-statesystems
Two-statesystems(e.g.spin-1/2,polari-sation),qubits
Physicalmanipulationwithpulses
Stateevolution,
Blochequation,
Larmorprecession,Rabioscillations
Pureandmixed
quantumstates
Decoherenceandcouplingtotheenvironment
Heisenbergprinciple,complementarity
Entanglement,
Bellinequalities,
non-locality
1.2
Linearalgebra,
functionalanalysis
(Linear)differentialequations
Statistics,probabilitytheory,combinatorics
Advancedmathe-
matics,e.g.topology,grouptheory,
symmetry
Perturbationtheory
Mathematicalfoundations
Statespace,
Diracnotation
Operators,eigenvec-tors,eigenvalues
Classicalinformationtheory,
Shannonentropy
Quantumchannels,
distancemeasures,
vonNeumannentropy
CONCEPTSANDFOUNDATIONS
1
BASICQUANTUMCONCEPTS
MATHEMATICALFORMALISM
ANDINFORMATIONTHEORY
6
PHYSICALFOUNDATIONS
OFQUANTUMTECHNOLOGIES
2
2.1
2.2
2.3
2.4
ATOMICPHYSICS
Electroniclevels,quantumnumbers,leveltransitions,Rydbergstates
Hyperfinestructure,Zeemaneffect,Starkeffect
Angularmomentum(spin,orbital,total),interactions
QUANTUMOPTICSANDELECTRODYNAMICS
Classical,quantumandnon-linearoptics,polarisationdegreesoffreedom
Photonstatistics,bunching,antibunching
Fockstates,coherentstates,squeezedstates
Quantumopticalexperiments,interferometry,microscopyandspectroscopy
Quantumelectrodynamics(QED)
Light-matterinteractions
SOLID-STATEPHYSICS
Properties(bandstructure,electricaltransport,opticalproperties,magnetism)
Semiconductortheory
Superconductivity,Josephsoneffect,Josephsonjunctions
Mesoscopicphenomena,quantumconfinementeffects
Topologicaleffects
Magnetometry,spinmanipulationexperiments
QUANTUMMANY-BODYSYSTEMSANDOPENQUANTUMSYSTEMS
Pauliprinciple,bosons,fermions,FermigasesandFermiliquids
Quantumdegenerategases,Bose-Einsteincondensation
Quantumstatistics,entropy
Molecularphysics
Openquantumsystems
Decoherencemechanisms(relaxation,dephasing,photonloss)
7
ENABLINGTECHNOLOGIES
ANDTECHNIQUES
3
3.1
3.2
3.3
3.4
LABORATORYTECHNIQUES,
NOISEANDSHIELDING
Noiseanalysis
Cryogenic,vacuumandcleanroomtechnologies
Shieldingtechniques,housing,magnets
SOLID-STATETECHNOLOGIES,
NANOTECHNOLOGIES
Micro-andnanostructuring
Quantummaterialsdesign
Micro-andnanoelectronics,e.g.2Delectrongasandmaterials,single-electrontransistor(SET),spintronics
Semiconductortechnologies
Superconductingdevices,SQUIDs
OPTICALTECHNOLOGIES
Classicaloptics
Lasers
Singlephotonsources
Singlephotondetectorsandcameras
Photonics,fibres
CONTROLTECHNOLOGIES
Signalanddataprocessing
Electronics,microwaveandRF(radiofrequency)technologies,frequencyconversion,modulationandgeneration
Lasercooling,laserstabilisation
Generationofspecialquantumstates,
e.g.Bellstates,squeezedstates
Resonators
Opto-electronicalandopto-mechanicalsystems
3.5COMPUTERSANDSOFTWARE
ITinfrastructureandsoftwarestack
Classicalprogramming,algorithmdesignand
softwaredevelopmenttechniques,mathematicalmodelling
Controlsoftware:calibration,guideelectronics/optics,error-robustphysicaloperations,tuningandstabilisationofhardware
Quantumcontrolalgorithms
Machinelearninginspiredandintegratedapproaches
8
QUANTUMHARDWARE
QUANTUMSTATECONTROL
Stateinitialisationandreadout
Statemanipulation,realisationofquantumgates
Qubitcoupling&interconnectivity
Interconversionofdifferentqubittypes
HYBRIDQUANTUMSYSTEMS
Highperformancecomputer(HPC)systems
Machinelearningintegration
Integrationofclassicalandquantumnetworks
Quantuminterfaces
4.8TECHNOLOGYREALISATION
Noise,generalandplatform-specificlimitations,benchmarking
Miniaturisation,scaling
Integrationonachip,e.g.photonicintegratedcircuits,atomchips
4.6
4.7
4
SUPERCONDUCTINGELECTRONIC
4.1
CIRCUITS
Qubittypes,e.g.charge,flux,phase,transmon
SPIN-BASEDSYSTEMS
Electron-spinqubits,nitrogen-vacancy(NV)centresindiamond
Semiconductorquantumdots
Nuclear-spinqubits
NEUTRALATOMSANDIONS
Trappedions
Rydbergatoms
Coldatoms,molecules,quantumgases
Neutralatomsinopticallattices
PHOTONICSYSTEMS
Linearopticalelementsandnetworks,
opticalinstrumentsforphotonsasqubits
Bosonsamplingtechniques
Entangledphotonsources
EMERGINGQUBITCONCEPTS
Topologicalqubits
Molecular-spinqubits
4.2
4.5
4.3
4.4
9
QUANTUMCOMPUTING
ANDSIMULATION
5
BASICS
Reversibility,DiVincenzocriteria
Qubits,quantumgates,universalgateset
Universalfault-tolerantquantum
computers,NISQquantumcomputers
Circuitdesign,notation,matrix
representation
Basicquantumprogrammingtechniques
Complexitytheory,quantumcomplexityclasses,computationallimitations,
quantumadvantage
QUANTUMSIMULATORS
Digitalquantumsimulators
Analoguequantumsimulatorsand(adiabatic)quantumannealers
QUANTUMPROGRAMMING
TOOLSANDSOFTWARE
STACK,ERRORCORRECTION
Graphicalplatforms
Quantumassemblerlanguagesandsoftwaredevelopmentkits,quantumcircuitsimulators
Quantumcompilers,high-levelprogram-mingwithpre-defindedsubroutines
Hybridquantum-classicalalgorithmsandquantumembedding
Cloudplatforms
Quantumerrorcorrection,
quantumerrormitigation
QUANTUMCOMPUTING
SUBROUTINES
Quantumamplitudeamplification
QuantumFourierTransform(QFT),hiddensubgroupfinding
Quantumphaseestimation
Quantumlinearalgebrasubroutines,quantumsingularvaluedecomposition
Othertechniquesandsubroutines,e.g.quantumwalks,amplitudeestimation
5.2
5.3
5.4
5.1
QUANTUMALGORITHMS
Numbertheoryandfactorisation(e.g.Shoralgorithm)
Oracularalgorithmsanddatabasesearch(e.g.Groveralgorithm)
Linearalgebra(e.g.Harrow-Hassidim-Lloydalgorithm)
Quantumoptimisation
Quantummachinelearning,quantumneuralnetworks
Quantumsimulationalgorithms
Noisyintermediate-scalequantum(NISQ)algorithms:VariationalQuantumEigensolver(VQE),
QuantumApproximateOptimisationAlgorithm(QAOA)
APPLICATIONSOFQUANTUMCOMPUTINGANDSIMULATION
Materialsscience
Pharmaceuticaldrugdiscovery
Catalystdiscovery(improve-mentofchemicalprocesseslikeHaber-Bosch)
Simulationofcomplexpro-cesses,e.g.aerodynamics,structuraldynamics,crash&safety
Computationalfluiddynamics,
e.g.airflowaroundaircraft
Surrogatemachinelearning
simulations
Designoptimisation
Routing
Supplychainmanagement,
Insuranceriskassessment
Financialportfoliooptimisation
Satisfiabilityproblems(SAT):
ofconstraints
Sequencingproblemsforop-
jobs
Datasecurityand
cryptography
loadingandsizing,productionplanning
Optimisationinfinance,production,network
andlogistics
Manufacturing,e.g.newtypesofbatteries
timalsequenceforexecuting
basedmodelsfornumerical
possiblesolutionsforaset
Engineeringanddesign
5.6
5.5
10
QUANTUMSENSORS
ANDIMAGINGSYSTEMS
6
BASICS
Fundamentalquantumlimits(standardquantumlimit,Heisenberglimit)
DefinitionofSIunits
Measurementcriteria(sensitivity,
resolution,etc.),classicalalternatives,performanceanalysis
ELECTROMAGNETICFIELD
6.2
SENSORS
NVcentres,Rydbergatoms,
superconductingsensors
Atomicmagnetometersandopticallypumpedmagnetometers(OPMs)
TEMPERATURE,PARTICLEANDPRESSURESENSORS
Spin-qubitbasedsensors
Precisionspectroscopygassensors
Optomechanicalsensors
INERTIALANDGRAVITYSENSORS
Micro-electromechanicalsensors(MEMS)
Atominterferometers
Rotatingnanoparticlesensors
QUANTUMIMAGING
Interaction-freemeasurement
Quantumghostimaging,lithography,imagingwithundetectedphotons,
tomographicimagin
Quantumradar,quantumlidar
6.3
6.5
6.4
6.1
ATOMICCLOCKS
Microwaveclocks,atomicfountainclocks,coherentpopula-tiontrapping(CPT)clocks
Opticalclocks,trappedionclocks,neutralatomsinopticallatticesclocks,quantumlogicclocks
Nuclearclocks
Transportableatomicclocks
6.7APPLICATIONSOFQUANTUMSENSORS
Metrologyatasingle
quantumlevel
Medicineand
molecularbiology
Transportandnaviga-
tion,precisetiming
andpositiondetection
Controlinindustrial
processes
Geology,underground
surveys,naturalresourceexploration,archaeology
Civilengineering,
infrastructuremonitoring
Earthmonitoring,naturalhazardprevention
Magneticdetectionof
n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年中国外用止痛药行业竞争格局及投资价值研究报告
- 2024-2030年中国型煤(型焦)行业发展前景预测规划研究报告
- 2024-2030年中国四功能折叠健身器产业未来发展趋势及投资策略分析报告
- 2024-2030年中国印花涂料色浆市场运行状况及发展趋势预测报告
- 梅河口康美职业技术学院《有限元分析与可靠性设计》2023-2024学年第一学期期末试卷
- 眉山药科职业学院《小学道德与法治课程与教学》2023-2024学年第一学期期末试卷
- 2024年物业买卖合同范本:物业信息与交易条件
- 2024年度绿色建筑HSE施工与运维服务合同2篇
- 微专题物质的制备实验突破策略-2024高考化学一轮考点击破
- 2024年标准专业施工承包协议文件版B版
- 道德与法治中考备考建议课件
- 财产保险退保申请范文推荐6篇
- 食品工程原理课程设计
- YYT 0325-2022 一次性使用无菌导尿管
- 羊膜在眼科临床中应用课件
- (71)第十五章15.2.3整数指数幂1-负整数指数幂-导学案
- 初步设计方案询价表
- 2022年江苏省环保集团有限公司招聘笔试题库及答案解析
- 《汽车焊接技术》试卷期末理论考试含参考答案一套
- FMEA分析经典案例【范本模板】
- 2023-2023年山东省学业水平考试英语试题及答案
评论
0/150
提交评论