量子技术能力框架 2.0 版(2023 年 4 月)_第1页
量子技术能力框架 2.0 版(2023 年 4 月)_第2页
量子技术能力框架 2.0 版(2023 年 4 月)_第3页
量子技术能力框架 2.0 版(2023 年 4 月)_第4页
量子技术能力框架 2.0 版(2023 年 4 月)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FundedbytheEuropeanUnion

UANTUM

FLACSHIP

European

CompetenceFramework

forQuantumTechnologies

compiledbyFranziskaGreinertandRainerMüller,

supportedbySimonGoorney,RiccardoLaurenza,

JacobShersonandMalteUbben

Version2.0(April2023)

Quantumbackground

Coredevicetechnologies

QTsystemsandapplications

ENABLINGTECHNOLO-GIESANDTECHNIQUES

Laboratorytechniques,

noiseandshielding

Solid-statetechnologies,

nanotechnologies

Opticaltechnologies

Controltechnologies

Computersandsoftware

QUANTUMHARDWARE

Superconductingelectroniccircuits

Spin-basedsystems

Neutralatomsandions

Photonicsystems

Emergingqubitconcepts

Quantumstatecontrol

Hybridquantum-classicalsystems

Technologyrealisation

3

3.1

3.2

3.3

3.4

3.5

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

EuropeanCompetenceFrameworkforQuantumTechnologiesOverview–Version2.0

PHYSICALFOUNDATIONS

OFQUANTUMTECHNOLOGIES

Atomicphysics

Quantumopticsandelectrodynamics

Solid-statephysic

Quantummany-bodysystemsandopenquantumsystems

CONCEPTS

ANDFOUNDATIONS

Basicquantumconcepts

Mathematicalformalismandinformationtheory

2

2.1

2.2

2.3

2.4

1

1.1

1.2

QUANTUMCOMMUNICATIONANDNETWORKS

Basics

Quantumrandomnumber

generators

Quantumkeydistribution

Applicationsofquantum

cryptography

Infrastructureforquantuminforma-tionnetworks(quantuminternet)

Systemsnetworks(compositesys-tems),quantuminternetapplications

VALORISATION

Industrylandscapeandmarketanalysis

Businessstrategy,entrepreneurshipandmanagement

Impact

Responsibilityandawareness

QUANTUMCOMPUTINGANDSIMULATION

Basics

Quantumsimulators

Quantumprogrammingtoolsandsoftwarestack,errorcorrection

Quantumcomputing

subroutines

Quantumalgorithms

Applicationsofquantumcomputingandsimulation

QUANTUMSENSORS

ANDIMAGINGSYSTEMS

Basics

Electromagneticfield

sensors

Temperature,particleandpressuresensors

Inertialandgravitysensors

Quantumimaging

Atomicclocks

Applicationsofquantumsensors

5

5.1

5.2

5.3

5.4

5.5

5.6

6

6.1

6.2

6.3

6.4

6.5

6.6

6.7

7

7.1

7.2

7.3

7.4

7.5

7.6

8

8.1

8.2

8.3

8.4

Version2.0(April2023)compiledbyFranziskaGreinertandRainerMüller,supportedbySimonGoorney,RiccardoLaurenza,JacobShersonandMalteUbbenQUCATS–QuantumFlagshipCoordinationAcTionandSupport

Coverphoto:©Siarhei–

2

BASICQUANTUMCONCEPTS

MATHEMATICALFORMALISMANDINFORMATIONTHEORY

subdomain

BASICQUANTUMCONCEPTS

topic

subtopic

Probabilisticnatureofquantumphysics

Measurementdynam-ics(statereduction)

No-cloningtheorem,incompletestate

informationfrom

measurement

HowtousetheCompetenceFramework

TheEuropeanCompetenceFrameworkforQuantumTechnologiesaimstomapthelandscapeofpossibleknowledgeandskillsinQuantumTechnologies.IthasbeencompiledintheQuantumFlag-shipCSAs(QTEdu,QUCATS)inordertofacilitatetheplanninganddesignofeducationandtrainingprojectsinQuantumTechnologies.

TheCompetenceFrameworkconsistsofeightdomains.Theyout-linethebroadstructureofQuantumTechnologies:

1CONCEPTSANDFOUNDATIONS

Eachoftheseeightdomainshasseveralsubdomains,e.g.

1.1

1.2

Onthefirstpageofthisdocument,theoverviewofthedomainsandsubdomainsisshowninagraphicalscheme.Foreachdomainthereisanextrapagewithmoredetails:

1.1

Stationarystates,

energyquantisation,wells

Superposition,

interference

Unitarytimeevolution,Schrödingerequation,tunneling

Quantummeasure-ment

Dependingonthetargetaudience,eacheducationalofferwillad-dressdifferentlevelsofdepthanddifficulty.Toreflectthis,thereisanadditionaldimensiontotheCompetenceFrameworkthatisnotshownintheoverviewgraphic.Foreachentry,aproficiencylevelcanbespecified:fromA1(Awareness)toC2(Innovation).Theuseofproficiencylevelsmakesiteasiertotailoreducationandtrainingofferstotheneedsofthetargetgroups.Newinversion2.0areextendeddescriptionsoftheselevelsadaptingtheEuro-peanQualificationFrameworklevels,seep.5.

A1AwarenessA2Exploration

B1AdaptationB2Expertise C1SpecialisationC2Innovation

Inaddition,thenewp.4explainstheoverallstructurebydescrib-ingthethreelargerblocksoftwoorfourdomains,supplementedbykeyskillsfortheblocks.

TheCompetenceFrameworkhasbeencompiledusingabot-tom-upapproach.Betweensummer2020andspring2021,athree-roundstudywithover150participantsfromtheQTcommunityprovidedinitialinput(seepaperTheFutureQuan-tumWorkforce:Competences,RequirementsandForecasts,tobepublishedinPhys.Rev.Phys.Educ.Res.,preprintondoi:arXiv:2208.08249).Theresultswererefinedthroughexpertinter-viewsforeachdomain,leadingtoversion1.0fromMay2021.DetailsaredocumentedintheMethodologyandVersionHistory(2021,doi:10.2759/130432).Forthecurrentversion2.0,feed-backandusageexperienceshavebeenincorporated,andeventshavebeenconductedtoinvolvethecommunity.

QuantumTechnologiesarerapidlyevolving.Newtechnologieswillbedeveloped,otherswillbecomelessimportant.TheCompetenceFrameworkwillhavetobeadaptedaccordingly.Thus,theCom-petenceFrameworkisalivingdocumentthatwillbeupdatedinregularintervals.Suggestionsforadditionsandcorrectionsarewelcomeatanytime.

Pleasecontact:

FranziskaGreinert,f.greinert@tu-braunschweig.de

QUCATS–QuantumFlagshipCoordinationAcTionandSupport

Version1.0ofthisframeworkhasbeencompiledaspartofaprojectthathasre-ceivedfundingfromtheEuropeanUnion’sHorizon2020researchandinnovationprogrammeundergrantagreementNo951787.ItsfurtherdevelopmentispartofaprojectthathasreceivedfundingfromtheEuropeanUnion’sHorizonEuroperesearchandinnovationprogrammeundergrantagreementNo101070193.

Thispublicationreflectsonlytheviewsoftheauthors,theEuropeanCommissionisnotresponsibleforanyusethatmaybemadeoftheinformationitcontains.

Howtocite:

F.GreinertandR.Müller,EuropeanCompetenceFrameworkforQuantumTechnolo-gies,doi:10.5281/zenodo.6834598(2023),version2.0

©EuropeanUnion,2023

ThereusepolicyofEuropeanCommissiondocumentsisimplementedbyCommissionDecision2011/833/EUof12December2011onthereuseofCommissiondocuments(OJL330,14.12.2011,p.39).

Unlessotherwisenoted,thereuseofthisdocumentisauthorisedundertheCreativeCommonsAttribution4.0International(CC-BY4.0)licence(https://creativecommons.org/licenses/by/4.0/).Thismeansthatreuseisallowed,providedappropriatecreditisgivenandanychangesareindicated.

3

Quantumbackground

technologies

andapplications

Coredevice

QTsystems

NewinVersion2.0

QTsystemsandapplications

Thesedomainscovertherangeoffullquantumtechnology(QT)systemsandtheirapplications.EachofthethreemainQTpillarshasadedicat-eddomain,namelyq.computingandsimulation(domain5),q.sensorsandimagingsystems(6)andq.communicationandnetworks(7).Eachofthesedomainsstartswithdomain-specificfoundations(5.1,6.1,7.1),followedbydevicesorprocessessuchaskeydistributionorquantumprogramming.Theyendwithapplicationareasandexampleusecases(5.6,6.7,7.4and7.6).Domain7hasaspecialtwo-partstructure,with7.2to7.4onquantumcryptographyand7.5and7.6onquantumnetworks.Inaddition,domain8coversthegeneralbusinessperspective,with

From

component

toapplica-tion

impactandlandscape,aswellasaddressingresponsibilityandawarenessraising.

Keyskills

Use:Operateadeviceorrunanalgorithmandanalyse/interpretdataincontextoftheusecase.Identifyusecases,createvalue:Identifypoten-tialusecases,analyseadvantagesandpossibili-tiestocreateindustrialvalue.

Translateusecases:Translatereal-worldusecaseintoapplicationrequirements.

Adaptation/implementation:Compareandchoosefromdifferentapproaches,adaptorcom-binethesedependingontheusecase.

Keyskills

Manufacturing:Technical/mechanicalskillstobuild/assemblehardware.

Hardware:Laboratorytechniques(labskills),componentorsystemimprovement,testingandmaintenance.

Software:Coding/programming(classical),dataprocessingandanalysis,interpretation.

Technologyrealisation:Requirementsdefinition,planning,integrationofquantumhardwareplat-formswithcontroltechnologies,software,etc.intoQTsystems.

Overallstructure:

Threeblockswithdescriptionsandkeyskills

Quantumbackground

Thequantumbackgroundcoversthebasicconcepts(subdomain1.1)thatarerelevantforthephenomenologicalunderstanding(“awareness”)ofthebasicideaofquantumtechnologies,theiradvancesandchallengescomparedtoclassicaltechnologies.Subdomain1.1alsocoversadvancedconceptsthatformthecommonbasisforthequantumphysicalfoundations(domain2).Similarly,subdomain1.2coversbothbasicmathematicalconceptsandhighermathematicsfordomain2thatarerelevantfordescribingtheconceptsandfunctionalityofQTorforcomputingorpredictingapplicationsaswellasinformationtheoryfoun-dations.Thephysicalfoundationsaredividedintofoursubdomainsinwhichonecouldspecialise,includingtheoriesandeffects,strategiesandkeyexperiments.

Keyskills

Communicate/explain:Abilitytoexplainconcepts,phenomena,etc.andtocommunicateaboutquantum.

Mathematics:Describequantumphenomena/conceptsandunderlyingphysicswithmathematicsandusemathematicstocal-culate/computeandpredictapplications.

Theoreticalphysics:Understandordevelopnewapproaches,identifypotentialforadvances.

Experiments:Planandprepareexperiments,conductexperimentsanddocumentandevaluateresults.

Background

Coredevicetechnologies

Thisblockcoversthetechnicalfoundationsforbuildingacompletequantumtechnologysystem.Thecoreofthesesystems,thedifferenthard-wareplatformsfortheuseofindividualquantumobjects(subdomains4.1to4.5)andthedirectcontrolofthesephysicalqubits(4.6)arelocatedinthequantumhardware(domain4).Theena-blingtechnologies,i.e.thecomponentsaroundthequantumcoretobuildthecompleteQTsys-temandtherelatedtechniquesarecoveredindomain3,includingsoftwaredevelopment(3.5)tocontrolthehardware.Inaddition,theintegra-tionintohybridsystems(4.7)andthetechnolog-icalrealisation(4.8)arecovered.

Supplychain

Selection,

consultancy

Systemsassembly

Development

Adaptation

End-user

Component

supplier

4

NewinVersion2.0

Proficiencylevelswithexamples

A1

B1

C1

Awareness(afewhours)

Basicidea,overviewofpossibilitiesandlimitations,

reproducesolutions,operateadeviceorrunanalgorithm.

Adaptation(fewweekscourse)

Specialisedknowledgeinasubdomain,awarenessofitsboundaries,explaincomplexfunctionalities,adapt

approachesforconcretesettings.

Specialisation(longerresearchproject)

Highlyspecialisedknowledge,criticalawarenessof

interconnections,newsolutionsandmethods,combineandintegrateapproaches.

A2

B2

C2

Exploration(afewdays)

Knowledgeoffundamentalsorlandscapeofapproaches,describefunctionalities,readandinterpretanalgorithmoradescription.

Expertise(shortresearchproject)

Advancedknowledge,criticalperspectives,assessment

ofconsequences,adaptordevelopsolutionsforreal-worldusecases,identifypossibleusecases.

Innovation(long-yearexperiencewithR&D)

Mostadvancedknowledge,interconnections,developinnovativesolutions,evaluateandassess,extendandredefineprofessionalpractice.

Proficiencylevels(generaldescriptions,longformat)

withK:Knowledge,S:Skills(abilitytodosomething)

A1Awareness(uptoafewhoursofinstructionorself-study)

K:Basicidea(phenomena-oriented)ofrelatedconceptsandfunctionali-ties,knowbasicvocabulary,overviewofpossibilities,challengesandlimi-tations.

S:Abilitytoreproducesolutionsforsmallproblems,operateadeviceorrunanalgorithmafterinstruction.

A2Exploration(uptoafewdaysofinstructionorself-study)

K:Knowledgeoffundamentalformalismand(working)principles,orland-scapeofapproaches/products/usecases.

S:Abilitytodescribefunctionalitieswithphysicalandmathematicalcon-cepts,readandinterpretanalgorithmorprocessdescription,identifywhichapproachtouseinwhichsituation.

B1Adaptation(e.g.throughasemester-longlecturewithpracticaltasks,homeworkand/orlaboratorycourse;afewweeksofsummerschool)

K:Knowledgeofavarietyofapproaches,specialisedknowledgeinase-lectedsubdomain,awarenessoftheboundariesofthisknowledge.

S:Abilitytoexplaincomplexfunctionalities,adaptapproachesforconcretesettings.

B2Expertise(e.g.throughashortresearchprojectasforabachelorthesis,internshipwithproject)

K:Advancedknowledgeoftheories,approachesandmethodsandtheirvalidity,includingcriticalperspectives,andassessmentofconsequences.

S:Abilitytoadaptordevelopsolutionsforcomplexandunpredictableproblemsandforreal-worldusecaseswithstate-of-the-arttechnologies,identifypossibleusecasesandadvances.

C1Specialisation(e.g.throughalongerresearchprojectsuchasforaMaster’sthesis,alongerinternshiporworkexperiencewithanR&Dproject)

K:Highlyspecialisedknowledgeinonesubdomainandcriticalawarenessofinterconnectionsbetweendifferent(sub-)domains.

S:Abilitytofindordevelopinnovativesolutionsfornewproblemsorusecases,generatenewmethods,combineandintegrateapproachesandsolutionsfromdifferent(sub-)domains.

C2Innovation(e.g.throughalongresearchprojectsuchasaPhDthesis,long-termworkexperienceinanR&Dproject)

K:Mostadvancedknowledgeinthesubdomainandoninterconnectionswithdifferentapproachesand(sub-)domains.

S:Abilitytofindordevelopinnovativesolutionsforcriticalproblemsorusecases,evaluateandassesssolutions,extendandredefineknowledgeorprofessionalpractice.

Examplesforproficiencylevels

withK:Knowledge,S:Skills(abilitytodosomething)

A1Awarenessinconceptsandfoundations(1)

K:Basicidea(phenomena-oriented)ofthefundamentalquantumconceptsandvocabularysuchassuperpositionandentanglement,challengesinmeasurementandthroughdecoherence,andbasicmathematicalnotationofquantumstates.

S:AbilitytoexplainthebasicideaofaQTanditspotential.

A2Explorationinquantumcomputing(5)

K:Knowledgeofqubitconceptsandcorrespondingformalism(5.1),over-viewofthealgorithmlandscape(5.5).

S:Abilitytoreadandinterpretanalgorithm(5.3),identifywhichcomputa-tionalapproach(5.5)maybringadvantageforwhichusecase(5.6).

B1Adaptationinquantumsensing:gravity(6.4)

K:Knowledgeofavarietyofquantumsensingdevices(6.2–6.6),special-isedknowledgeaboutquantumgravitysensors(6.4)withcurrentandpo-tentialusecasesandchallenges(from6.7).

S:Abilitytoadaptasensingdevicetoaconcreteusecase,suchasmappingarchaeologicalstructures(6.7.c).

B2Expertiseinquantumcommunication:QKD(7.3)

K:AdvancedknowledgeofQKDprotocols(7.3),includingcriticalperspec-tivesandassessmentofapproaches,e.g.regardingsecurityproofsandconsequencesforimplementation.

S:AbilitytoadaptaQKDsetupforanewusecase,e.g.foravotingproce-dureandassociateddatatransmission,selectthestate-of-the-arttechnol-ogiestobeused;identifypotentialnewusecaseswherethisapproachcanalsobringadvantages.

C1Specialisationinenablingtechnologies:opticaltechnologies(3.3)

K:Highlyspecialisedknowledgeinthefieldofopticaltechnologies(3.3)andcriticalawarenessofinterconnectionswithothertechnologyfieldslikesolid-statetechnologies(3.2)andcontroltechnologies(3.4).

S:Abilitytodevelopinnovativehardwaresystemscombiningcomponentsandcontrolhardware,generatenewmethodstointegrateopticalcompo-nentswithotherhardwarecomponents.

C2Innovationinquantumhardware:superconductingcircuits(7.1)

K:Mostadvancedknowledgeonsuperconductingelectroniccircuits(4.1)andtheiruseasqubitsforquantumcomputingincombinationwithqubitcontrol(4.6)andothertechnologies(3),includingchallengesandstepsto-wardstechnologyrealisation(4.8).

S:Abilitytodevelopinnovativesolutionsforscalableandfault-tolerantqubits,evaluateandassessdifferentapproaches,extendandredefinepro-fessionalpracticewithnewandsuccessfulsolutions.

References:

Proficiencylevelsystem:LevelA1toC2likeintheCommonEuropeanFrameworkofReferenceforLanguages(CEFR,2020,2001,/lang-cefr),whichhasbeenusedintheEuropeanFrameworkfortheDigitalCompetenceofEducators(DigCompEdu,2017,doi:10.2760/159770),thetemplatefortheframeworkstructureandlevelkeywords.

ProficiencyleveldescriptionsarebasedonthelevelsfromTheEuropeanQualificationsFramework(EQF,2018.doi:10.2767/750617).

5

1.1

Stationarystates,

energyquantisation,wells

Superposition,

interference

Unitarytimeevolution,Schrödingerequation,tunneling

Quantummeasure-ment

Probabilisticnatureofquantumphysics

Measurementdynam-ics(statereduction)

No-cloningtheorem,incompletestate

informationfrom

measurement

Staterepresentation,visualisation(e.g.

Bloch/Poincarésphere)

Dynamicsof

two-statesystems

Two-statesystems(e.g.spin-1/2,polari-sation),qubits

Physicalmanipulationwithpulses

Stateevolution,

Blochequation,

Larmorprecession,Rabioscillations

Pureandmixed

quantumstates

Decoherenceandcouplingtotheenvironment

Heisenbergprinciple,complementarity

Entanglement,

Bellinequalities,

non-locality

1.2

Linearalgebra,

functionalanalysis

(Linear)differentialequations

Statistics,probabilitytheory,combinatorics

Advancedmathe-

matics,e.g.topology,grouptheory,

symmetry

Perturbationtheory

Mathematicalfoundations

Statespace,

Diracnotation

Operators,eigenvec-tors,eigenvalues

Classicalinformationtheory,

Shannonentropy

Quantumchannels,

distancemeasures,

vonNeumannentropy

CONCEPTSANDFOUNDATIONS

1

BASICQUANTUMCONCEPTS

MATHEMATICALFORMALISM

ANDINFORMATIONTHEORY

6

PHYSICALFOUNDATIONS

OFQUANTUMTECHNOLOGIES

2

2.1

2.2

2.3

2.4

ATOMICPHYSICS

Electroniclevels,quantumnumbers,leveltransitions,Rydbergstates

Hyperfinestructure,Zeemaneffect,Starkeffect

Angularmomentum(spin,orbital,total),interactions

QUANTUMOPTICSANDELECTRODYNAMICS

Classical,quantumandnon-linearoptics,polarisationdegreesoffreedom

Photonstatistics,bunching,antibunching

Fockstates,coherentstates,squeezedstates

Quantumopticalexperiments,interferometry,microscopyandspectroscopy

Quantumelectrodynamics(QED)

Light-matterinteractions

SOLID-STATEPHYSICS

Properties(bandstructure,electricaltransport,opticalproperties,magnetism)

Semiconductortheory

Superconductivity,Josephsoneffect,Josephsonjunctions

Mesoscopicphenomena,quantumconfinementeffects

Topologicaleffects

Magnetometry,spinmanipulationexperiments

QUANTUMMANY-BODYSYSTEMSANDOPENQUANTUMSYSTEMS

Pauliprinciple,bosons,fermions,FermigasesandFermiliquids

Quantumdegenerategases,Bose-Einsteincondensation

Quantumstatistics,entropy

Molecularphysics

Openquantumsystems

Decoherencemechanisms(relaxation,dephasing,photonloss)

7

ENABLINGTECHNOLOGIES

ANDTECHNIQUES

3

3.1

3.2

3.3

3.4

LABORATORYTECHNIQUES,

NOISEANDSHIELDING

Noiseanalysis

Cryogenic,vacuumandcleanroomtechnologies

Shieldingtechniques,housing,magnets

SOLID-STATETECHNOLOGIES,

NANOTECHNOLOGIES

Micro-andnanostructuring

Quantummaterialsdesign

Micro-andnanoelectronics,e.g.2Delectrongasandmaterials,single-electrontransistor(SET),spintronics

Semiconductortechnologies

Superconductingdevices,SQUIDs

OPTICALTECHNOLOGIES

Classicaloptics

Lasers

Singlephotonsources

Singlephotondetectorsandcameras

Photonics,fibres

CONTROLTECHNOLOGIES

Signalanddataprocessing

Electronics,microwaveandRF(radiofrequency)technologies,frequencyconversion,modulationandgeneration

Lasercooling,laserstabilisation

Generationofspecialquantumstates,

e.g.Bellstates,squeezedstates

Resonators

Opto-electronicalandopto-mechanicalsystems

3.5COMPUTERSANDSOFTWARE

ITinfrastructureandsoftwarestack

Classicalprogramming,algorithmdesignand

softwaredevelopmenttechniques,mathematicalmodelling

Controlsoftware:calibration,guideelectronics/optics,error-robustphysicaloperations,tuningandstabilisationofhardware

Quantumcontrolalgorithms

Machinelearninginspiredandintegratedapproaches

8

QUANTUMHARDWARE

QUANTUMSTATECONTROL

Stateinitialisationandreadout

Statemanipulation,realisationofquantumgates

Qubitcoupling&interconnectivity

Interconversionofdifferentqubittypes

HYBRIDQUANTUMSYSTEMS

Highperformancecomputer(HPC)systems

Machinelearningintegration

Integrationofclassicalandquantumnetworks

Quantuminterfaces

4.8TECHNOLOGYREALISATION

Noise,generalandplatform-specificlimitations,benchmarking

Miniaturisation,scaling

Integrationonachip,e.g.photonicintegratedcircuits,atomchips

4.6

4.7

4

SUPERCONDUCTINGELECTRONIC

4.1

CIRCUITS

Qubittypes,e.g.charge,flux,phase,transmon

SPIN-BASEDSYSTEMS

Electron-spinqubits,nitrogen-vacancy(NV)centresindiamond

Semiconductorquantumdots

Nuclear-spinqubits

NEUTRALATOMSANDIONS

Trappedions

Rydbergatoms

Coldatoms,molecules,quantumgases

Neutralatomsinopticallattices

PHOTONICSYSTEMS

Linearopticalelementsandnetworks,

opticalinstrumentsforphotonsasqubits

Bosonsamplingtechniques

Entangledphotonsources

EMERGINGQUBITCONCEPTS

Topologicalqubits

Molecular-spinqubits

4.2

4.5

4.3

4.4

9

QUANTUMCOMPUTING

ANDSIMULATION

5

BASICS

Reversibility,DiVincenzocriteria

Qubits,quantumgates,universalgateset

Universalfault-tolerantquantum

computers,NISQquantumcomputers

Circuitdesign,notation,matrix

representation

Basicquantumprogrammingtechniques

Complexitytheory,quantumcomplexityclasses,computationallimitations,

quantumadvantage

QUANTUMSIMULATORS

Digitalquantumsimulators

Analoguequantumsimulatorsand(adiabatic)quantumannealers

QUANTUMPROGRAMMING

TOOLSANDSOFTWARE

STACK,ERRORCORRECTION

Graphicalplatforms

Quantumassemblerlanguagesandsoftwaredevelopmentkits,quantumcircuitsimulators

Quantumcompilers,high-levelprogram-mingwithpre-defindedsubroutines

Hybridquantum-classicalalgorithmsandquantumembedding

Cloudplatforms

Quantumerrorcorrection,

quantumerrormitigation

QUANTUMCOMPUTING

SUBROUTINES

Quantumamplitudeamplification

QuantumFourierTransform(QFT),hiddensubgroupfinding

Quantumphaseestimation

Quantumlinearalgebrasubroutines,quantumsingularvaluedecomposition

Othertechniquesandsubroutines,e.g.quantumwalks,amplitudeestimation

5.2

5.3

5.4

5.1

QUANTUMALGORITHMS

Numbertheoryandfactorisation(e.g.Shoralgorithm)

Oracularalgorithmsanddatabasesearch(e.g.Groveralgorithm)

Linearalgebra(e.g.Harrow-Hassidim-Lloydalgorithm)

Quantumoptimisation

Quantummachinelearning,quantumneuralnetworks

Quantumsimulationalgorithms

Noisyintermediate-scalequantum(NISQ)algorithms:VariationalQuantumEigensolver(VQE),

QuantumApproximateOptimisationAlgorithm(QAOA)

APPLICATIONSOFQUANTUMCOMPUTINGANDSIMULATION

Materialsscience

Pharmaceuticaldrugdiscovery

Catalystdiscovery(improve-mentofchemicalprocesseslikeHaber-Bosch)

Simulationofcomplexpro-cesses,e.g.aerodynamics,structuraldynamics,crash&safety

Computationalfluiddynamics,

e.g.airflowaroundaircraft

Surrogatemachinelearning

simulations

Designoptimisation

Routing

Supplychainmanagement,

Insuranceriskassessment

Financialportfoliooptimisation

Satisfiabilityproblems(SAT):

ofconstraints

Sequencingproblemsforop-

jobs

Datasecurityand

cryptography

loadingandsizing,productionplanning

Optimisationinfinance,production,network

andlogistics

Manufacturing,e.g.newtypesofbatteries

timalsequenceforexecuting

basedmodelsfornumerical

possiblesolutionsforaset

Engineeringanddesign

5.6

5.5

10

QUANTUMSENSORS

ANDIMAGINGSYSTEMS

6

BASICS

Fundamentalquantumlimits(standardquantumlimit,Heisenberglimit)

DefinitionofSIunits

Measurementcriteria(sensitivity,

resolution,etc.),classicalalternatives,performanceanalysis

ELECTROMAGNETICFIELD

6.2

SENSORS

NVcentres,Rydbergatoms,

superconductingsensors

Atomicmagnetometersandopticallypumpedmagnetometers(OPMs)

TEMPERATURE,PARTICLEANDPRESSURESENSORS

Spin-qubitbasedsensors

Precisionspectroscopygassensors

Optomechanicalsensors

INERTIALANDGRAVITYSENSORS

Micro-electromechanicalsensors(MEMS)

Atominterferometers

Rotatingnanoparticlesensors

QUANTUMIMAGING

Interaction-freemeasurement

Quantumghostimaging,lithography,imagingwithundetectedphotons,

tomographicimagin

Quantumradar,quantumlidar

6.3

6.5

6.4

6.1

ATOMICCLOCKS

Microwaveclocks,atomicfountainclocks,coherentpopula-tiontrapping(CPT)clocks

Opticalclocks,trappedionclocks,neutralatomsinopticallatticesclocks,quantumlogicclocks

Nuclearclocks

Transportableatomicclocks

6.7APPLICATIONSOFQUANTUMSENSORS

Metrologyatasingle

quantumlevel

Medicineand

molecularbiology

Transportandnaviga-

tion,precisetiming

andpositiondetection

Controlinindustrial

processes

Geology,underground

surveys,naturalresourceexploration,archaeology

Civilengineering,

infrastructuremonitoring

Earthmonitoring,naturalhazardprevention

Magneticdetectionof

n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论