西藏拉萨市达孜县中学2024届中考数学全真模拟试题含解析_第1页
西藏拉萨市达孜县中学2024届中考数学全真模拟试题含解析_第2页
西藏拉萨市达孜县中学2024届中考数学全真模拟试题含解析_第3页
西藏拉萨市达孜县中学2024届中考数学全真模拟试题含解析_第4页
西藏拉萨市达孜县中学2024届中考数学全真模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西藏拉萨市达孜县中学2024届中考数学全真模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.实数在数轴上的点的位置如图所示,则下列不等关系正确的是()A.a+b>0 B.a-b<0 C.<0 D.>2.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC的外角,则∠1+∠2+∠3等于A.90° B.180° C.210° D.270°3.下列生态环保标志中,是中心对称图形的是()A.B.C.D.4.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为()A.4 B.4 C.6 D.45.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.66.在下面的四个几何体中,左视图与主视图不相同的几何体是()A. B. C. D.7.如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为()A.4 B..5 C.6 D.88.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x≠2 C.x>﹣2 D.x≠﹣29.下列说法不正确的是()A.某种彩票中奖的概率是,买1000张该种彩票一定会中奖B.了解一批电视机的使用寿命适合用抽样调查C.若甲组数据的标准差S甲=0.31,乙组数据的标准差S乙=0.25,则乙组数据比甲组数据稳定D.在一个装有白球和绿球的袋中摸球,摸出黑球是不可能事件10.下列命题正确的是()A.内错角相等B.-1是无理数C.1的立方根是±1D.两角及一边对应相等的两个三角形全等二、填空题(共7小题,每小题3分,满分21分)11.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…、6点的标记,掷一次骰子,向上的一面出现的点数是素数的概率是_____.12.关于的一元二次方程有两个相等的实数根,则的值等于_____.13.因式分解:.14.⊙M的圆心在一次函数y=x+2图象上,半径为1.当⊙M与y轴相切时,点M的坐标为_____.15.在△ABC中,MN∥BC分别交AB,AC于点M,N;若AM=1,MB=2,BC=3,则MN的长为_____.16.将点P(﹣1,3)绕原点顺时针旋转180°后坐标变为_____.17.已知:正方形ABCD.求作:正方形ABCD的外接圆.作法:如图,(1)分别连接AC,BD,交于点O;(2)以点O为圆心,OA长为半径作⊙O,⊙O即为所求作的圆.请回答:该作图的依据是__________________________________.三、解答题(共7小题,满分69分)18.(10分)某市为了解市民对已闭幕的某一博览会的总体印象,利用最新引进的“计算机辅助电话访问系统”(简称CATI系统),采取电脑随机抽样的方式,对本市年龄在16~65岁之间的居民,进行了400个电话抽样调查.并根据每个年龄段的抽查人数和该年龄段对博览会总体印象感到满意的人数绘制了下面的图(1)和图(1)(部分)根据上图提供的信息回答下列问题:(1)被抽查的居民中,人数最多的年龄段是岁;(1)已知被抽查的400人中有83%的人对博览会总体印象感到满意,请你求出31~40岁年龄段的满意人数,并补全图1.注:某年龄段的满意率=该年龄段满意人数÷该年龄段被抽查人数×100%.19.(5分)如图,在矩形ABCD中,AB=4,BC=6,M是BC的中点,DE⊥AM于点E.求证:△ADE∽△MAB;求DE的长.20.(8分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?21.(10分)如图,直线y=2x+6与反比例函数y=(k>0)的图像交于点A(1,m),与x轴交于点B,平行于x轴的直线y=n(0<n<6)交反比例函数的图像于点M,交AB于点N,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?22.(10分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.23.(12分)(1)(a﹣b)2﹣a(a﹣2b)+(2a+b)(2a﹣b)(2)(m﹣1﹣).24.(14分)如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.分别求出一次函数与反比例函数的解析式;求△OAB的面积.

参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】

根据点在数轴上的位置,可得a,b的关系,根据有理数的运算,可得答案.【题目详解】解:由数轴,得b<-1,0<a<1.A、a+b<0,故A错误;B、a-b>0,故B错误;C、<0,故C符合题意;D、a2<1<b2,故D错误;故选C.【题目点拨】本题考查了实数与数轴,利用点在数轴上的位置得出b<-1,0<a<1是解题关键,又利用了有理数的运算.2、B【解题分析】

试题分析:如图,如图,过点E作EF∥AB,∵AB∥CD,∴EF∥AB∥CD,∴∠1=∠4,∠3=∠5,∴∠1+∠2+∠3=∠2+∠4+∠5=180°,故选B3、B【解题分析】试题分析:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【考点】中心对称图形.4、B【解题分析】

由已知条件可得,可得出,可求出AC的长.【题目详解】解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD是中线,BC=8,得DC=4,代入可得AC=,故选B.【题目点拨】本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.5、C【解题分析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.6、B【解题分析】

由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【题目详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【题目点拨】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.7、C【解题分析】

解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得,即,解得EF=6,故选C.8、D【解题分析】试题分析:∵分式有意义,∴x+1≠0,∴x≠﹣1,即x的取值应满足:x≠﹣1.故选D.考点:分式有意义的条件.9、A【解题分析】试题分析:根据抽样调查适用的条件、方差的定义及意义和可能性的大小找到正确答案即可.试题解析:A、某种彩票中奖的概率是,只是一种可能性,买1000张该种彩票不一定会中奖,故错误;B、调查电视机的使用寿命要毁坏电视机,有破坏性,适合用抽样调查,故正确;C、标准差反映了一组数据的波动情况,标准差越小,数据越稳定,故正确;D、袋中没有黑球,摸出黑球是不可能事件,故正确.故选A.考点:1.概率公式;2.全面调查与抽样调查;3.标准差;4.随机事件.10、D【解题分析】解:A.两直线平行,内错角相等,故A错误;B.-1是有理数,故B错误;C.1的立方根是1,故C错误;D.两角及一边对应相等的两个三角形全等,正确.故选D.二、填空题(共7小题,每小题3分,满分21分)11、【解题分析】

先判断掷一次骰子,向上的一面的点数为素数的情况,再利用概率公式求解即可.【题目详解】解:∵掷一次这枚骰子,向上的一面的点数为素数的有2,3,5共3种情况,∴掷一次这枚骰子,向上的一面的点数为素数的概率是:.故答案为:.【题目点拨】本题考查了求简单事件的概率,根据题意判断出素数的个数是解题的关键.12、【解题分析】分析:先根据根的判别式得到a-1=,把原式变形为,然后代入即可得出结果.详解:由题意得:△=,∴,∴,即a(a-1)=1,∴a-1=,故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0,方程有两个不相等的实数根;当△<0,方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义.13、;【解题分析】

根据所给多项式的系数特点,可以用十字相乘法进行因式分解.【题目详解】x2﹣x﹣12=(x﹣4)(x+3).故答案为(x﹣4)(x+3).14、(1,)或(﹣1,)【解题分析】

设当⊙M与y轴相切时圆心M的坐标为(x,x+2),再根据⊙M的半径为1即可得出y的值.【题目详解】解:∵⊙M的圆心在一次函数y=x+2的图象上运动,∴设当⊙M与y轴相切时圆心M的坐标为(x,x+2),∵⊙M的半径为1,∴x=1或x=−1,当x=1时,y=,当x=−1时,y=.∴P点坐标为:(1,)或(−1,).故答案为(1,)或(−1,).【题目点拨】本题考查了切线的性质与一次函数图象上点的坐标特征,解题的关键是熟练的掌握切线的性质与一次函数图象上点的坐标特征.15、1【解题分析】

∵MN∥BC,∴△AMN∽△ABC,∴,即,∴MN=1.故答案为1.16、(1,﹣3)【解题分析】

画出平面直角坐标系,然后作出点P绕原点O顺时针旋转180°的点P′的位置,再根据平面直角坐标系写出坐标即可.【题目详解】如图所示:点P(-1,3)绕原点O顺时针旋转180°后的对应点P′的坐标为(1,-3).

故答案是:(1,-3).【题目点拨】考查了坐标与图形变化-旋转,作出图形,利用数形结合的思想求解更简便,形象直观.17、正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【解题分析】

利用正方形的性质得到OA=OB=OC=OD,则以点O为圆心,OA长为半径作⊙O,点B、C、D都在⊙O上,从而得到⊙O为正方形的外接圆.【题目详解】∵四边形ABCD为正方形,∴OA=OB=OC=OD,∴⊙O为正方形的外接圆.故答案为正方形的对角线相等且互相垂直平分;点到圆心的距离等于圆的半径的点在这个圆上;四边形的四个顶点在同一个圆上,这个圆叫四边形的外接圆.【题目点拨】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.三、解答题(共7小题,满分69分)18、(1)11~30;(1)31~40岁年龄段的满意人数为66人,图见解析;【解题分析】

(1)取扇形统计图中所占百分比最大的年龄段即可;(1)先求出总体感到满意的总人数,然后减去其它年龄段的人数即可,再补全条形图.【题目详解】(1)由扇形统计图可得11~30岁的人数所占百分比最大为39%,所以,人数最多的年龄段是11~30岁;(1)根据题意,被调查的人中,总体印象感到满意的有:400×83%=331人,31~40岁年龄段的满意人数为:331﹣54﹣116﹣53﹣14﹣9=331﹣116=66人,补全统计图如图.【题目点拨】本题考点:条形统计图与扇形统计图.19、(1)证明见解析;(2).【解题分析】试题分析:利用矩形角相等的性质证明△DAE∽△AMB.试题解析:(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠DAE=∠AMB,又∵∠DEA=∠B=90°,∴△DAE∽△AMB.(2)由(1)知△DAE∽△AMB,∴DE:AD=AB:AM,∵M是边BC的中点,BC=6,∴BM=3,又∵AB=4,∠B=90°,∴AM=5,∴DE:6=4:5,∴DE=.20、(Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.【解题分析】

(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.【题目详解】(Ⅰ)在中,,≈0.74,∴.答:发射台与雷达站之间的距离约为.(Ⅱ)在中,,∴.∵在中,,∴.∴.答:这枚火箭从到的平均速度大约是.【题目点拨】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.21、(1)m=8,反比例函数的表达式为y=;(2)当n=3时,△BMN的面积最大.【解题分析】

(1)求出点A的坐标,利用待定系数法即可解决问题;(2)构造二次函数,利用二次函数的性质即可解决问题.【题目详解】解:(1)∵直线y=2x+6经过点A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函数经过点A(1,8),∴8=,∴k=8,∴反比例函数的解析式为y=.(2)由题意,点M,N的坐标为M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3时,△BMN的面积最大.22、(1)50,360;(2).【解题分析】试题分析:(1)根据图示,可由非常了解的人数和所占的百分比直接求解总人数,然后根据求出不了解的百分比估计即可;(2)根据题意画出树状图,然后求出总可能和“一男一女”的可能,再根据概率的意义求解即可.试题解析:(1)由饼图可知“非常了解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论