版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省上饶市鄱阳县中考数学考前最后一卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.若a与﹣3互为倒数,则a=()A.3 B.﹣3 C.13 D.-2.下列四个不等式组中,解集在数轴上表示如图所示的是()A. B. C. D.3.如图,是一个工件的三视图,则此工件的全面积是()A.60πcm2 B.90πcm2 C.96πcm2 D.120πcm24.甲、乙两人约好步行沿同一路线同一方向在某景点集合,已知甲乙二人相距660米,二人同时出发,走了24分钟时,由于乙距离景点近,先到达等候甲,甲共走了30分钟也到达了景点与乙相遇.在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法错误的是()A.甲的速度是70米/分 B.乙的速度是60米/分C.甲距离景点2100米 D.乙距离景点420米5.下列计算中,错误的是()A.; B.; C.; D..6.在△ABC中,若=0,则∠C的度数是()A.45° B.60° C.75° D.105°7.某校九年级共有1、2、3、4四个班,现从这四个班中随机抽取两个班进行一场篮球比赛,则恰好抽到1班和2班的概率是()A.18 B.16 C.38.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为()A.65° B.60°C.55° D.45°9.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为()A.(,2) B.(4,1) C.(4,) D.(4,)10.如下字体的四个汉字中,是轴对称图形的是()A. B. C. D.二、填空题(共7小题,每小题3分,满分21分)11.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(,0),B(0,4),则点B4的坐标为_____,点B2017的坐标为_____.12.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________.13.若一个多边形每个内角为140°,则这个多边形的边数是________.14.若关于x的分式方程的解为非负数,则a的取值范围是_____.15.如图,在矩形ABCD中,对角线BD的长为1,点P是线段BD上的一点,联结CP,将△BCP沿着直线CP翻折,若点B落在边AD上的点E处,且EP//AB,则AB的长等于________.16.分解因式:3x2-6x+3=__.17.如图所示,在长为10m、宽为8m的长方形空地上,沿平行于各边的方向分割出三个全等的小长方形花圃则其中一个小长方形花圃的周长是______m.三、解答题(共7小题,满分69分)18.(10分)已知关于的一元二次方程.试证明:无论取何值此方程总有两个实数根;若原方程的两根,满足,求的值.19.(5分)已知:如图,平行四边形ABCD中,E、F分别是边BC和AD上的点,且BE=DF,求证:AE=CF20.(8分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.21.(10分)抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,3)点.(1)求出m的值并画出这条抛物线;(2)求它与x轴的交点和抛物线顶点的坐标;(3)x取什么值时,抛物线在x轴上方?(4)x取什么值时,y的值随x值的增大而减小?22.(10分)某学校要了解学生上学交通情况,选取七年级全体学生进行调查,根据调查结果,画出扇形统计图(如图),图中“公交车”对应的扇形圆心角为60°,“自行车”对应的扇形圆心角为120°,已知七年级乘公交车上学的人数为50人.(1)七年级学生中,骑自行车和乘公交车上学的学生人数哪个更多?多多少人?(2)如果全校有学生2400人,学校准备的600个自行车停车位是否足够?23.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.24.(14分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解题分析】试题分析:根据乘积是1的两个数互为倒数,可得3a=1,∴a=13故选C.考点:倒数.2、D【解题分析】
此题涉及的知识点是不等式组的表示方法,根据规律可得答案.【题目详解】由解集在数轴上的表示可知,该不等式组为,故选D.【题目点拨】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键.3、C【解题分析】
先根据三视图得到圆锥的底面圆的直径为12cm,高为8cm,再计算母线长为10,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形半径等于圆锥的母线长计算圆锥的侧面积和底面积的和即可.【题目详解】圆锥的底面圆的直径为12cm,高为8cm,所以圆锥的母线长==10,所以此工件的全面积=π62+2π610=96π(cm2).故答案选C.【题目点拨】本题考查的知识点是圆锥的面积及由三视图判断几何体,解题的关键是熟练的掌握圆锥的面积及由三视图判断几何体.4、D【解题分析】
根据图中信息以及路程、速度、时间之间的关系一一判断即可.【题目详解】甲的速度==70米/分,故A正确,不符合题意;设乙的速度为x米/分.则有,660+24x-70×24=420,解得x=60,故B正确,本选项不符合题意,70×30=2100,故选项C正确,不符合题意,24×60=1440米,乙距离景点1440米,故D错误,故选D.【题目点拨】本题考查一次函数的应用,行程问题等知识,解题的关键是读懂图象信息,灵活运用所学知识解决问题.5、B【解题分析】分析:根据零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义作答即可.详解:A.,故A正确;B.,故B错误;C..故C正确;D.,故D正确;故选B.点睛:本题考查了零指数幂、有理数的乘方、分数指数幂及负整数指数幂的意义,需熟练掌握且区分清楚,才不容易出错.6、C【解题分析】
根据非负数的性质可得出cosA及tanB的值,继而可得出A和B的度数,根据三角形的内角和定理可得出∠C的度数.【题目详解】由题意,得
cosA=,tanB=1,
∴∠A=60°,∠B=45°,
∴∠C=180°-∠A-∠B=180°-60°-45°=75°.
故选C.7、B【解题分析】画树状图展示所有12种等可能的结果数,再找出恰好抽到1班和2班的结果数,然后根据概率公式求解.解:画树状图为:共有12种等可能的结果数,其中恰好抽到1班和2班的结果数为2,所以恰好抽到1班和2班的概率=212故选B.8、A【解题分析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.【题目详解】由题意可得:MN是AC的垂直平分线,则AD=DC,故∠C=∠DAC,∵∠C=30°,∴∠DAC=30°,∵∠B=55°,∴∠BAC=95°,∴∠BAD=∠BAC-∠CAD=65°,故选A.【题目点拨】此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.9、D【解题分析】
由已知条件得到AD′=AD=4,AO=AB=2,根据勾股定理得到OD′==2,于是得到结论.【题目详解】解:∵AD′=AD=4,
AO=AB=1,
∴OD′==2,
∵C′D′=4,C′D′∥AB,
∴C′(4,2),故选:D.【题目点拨】本题考查正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题关键.10、A【解题分析】试题分析:根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此可知,A为轴对称图形.故选A.考点:轴对称图形二、填空题(共7小题,每小题3分,满分21分)11、(20,4)(10086,0)【解题分析】
首先利用勾股定理得出AB的长,进而得出三角形的周长,进而求出B2,B4的横坐标,进而得出变化规律,即可得出答案.【题目详解】解:由题意可得:∵AO=,BO=4,∴AB=,∴OA+AB1+B1C2=++4=6+4=10,∴B2的横坐标为:10,B4的横坐标为:2×10=20,B2016的横坐标为:×10=1.∵B2C2=B4C4=OB=4,∴点B4的坐标为(20,4),∴B2017的横坐标为1++=10086,纵坐标为0,∴点B2017的坐标为:(10086,0).故答案为(20,4)、(10086,0).【题目点拨】本题主要考查了点的坐标以及图形变化类,根据题意得出B点横坐标变化规律是解题的关键.12、6【解题分析】
多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【题目详解】正多边形的边数是:360°÷60°=6.正六边形的边长为2cm,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等,所以正六边形的面积.故答案是:.【题目点拨】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.13、九【解题分析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.【题目详解】由题意可得:180°(n−2)=140°n,解得n=9,故多边形是九边形.故答案为9.【题目点拨】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.14、且【解题分析】分式方程去分母得:2(2x-a)=x-2,去括号移项合并得:3x=2a-2,解得:,∵分式方程的解为非负数,∴且,解得:a≥1且a≠4.15、【解题分析】
设CD=AB=a,利用勾股定理可得到Rt△CDE中,DE2=CE2-CD2=1-2a2,Rt△DEP中,DE2=PD2-PE2=1-2PE,进而得出PE=a2,再根据△DEP∽△DAB,即可得到,即,可得,即可得到AB的长等于.【题目详解】如图,设CD=AB=a,则BC2=BD2-CD2=1-a2,
由折叠可得,CE=BC,BP=EP,
∴CE2=1-a2,
∴Rt△CDE中,DE2=CE2-CD2=1-2a2,
∵PE∥AB,∠A=90°,
∴∠PED=90°,
∴Rt△DEP中,DE2=PD2-PE2=(1-PE)2-PE2=1-2PE,
∴PE=a2,
∵PE∥AB,
∴△DEP∽△DAB,
∴,即,
∴,
即a2+a-1=0,
解得(舍去),
∴AB的长等于AB=.故答案为.16、3(x-1)2【解题分析】
先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【题目详解】.故答案是:3(x-1)2.【题目点拨】考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17、12【解题分析】
由图形可看出:小矩形的2个长+一个宽=10m,小矩形的2个宽+一个长=8m,设出长和宽,列出方程组解之即可求得答案.【题目详解】解:设小长方形花圃的长为xm,宽为ym,由题意得,解得,所以其中一个小长方形花圃的周长是.【题目点拨】此题主要考查了二元一次方程组的应用,解题的关键是:数形结合,弄懂题意,找出等量关系,列出方程组.本题也可以让列出的两个方程相加,得3(x+y)=18,于是x+y=6,所以周长即为2(x+y)=12,问题得解.这种思路用了整体的数学思想,显得较为简捷.三、解答题(共7小题,满分69分)18、(1)证明见解析;(2)-2.【解题分析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x1+x2=5、x1x2=6-p2-p,结合x12+x22-x1x2=3p2+1,即可求出p值.详解:(1)证明:原方程可变形为x2-5x+6-p2-p=1.∵△=(-5)2-4(6-p2-p)=25-24+4p2+4p=4p2+4p+1=(2p+1)2≥1,∴无论p取何值此方程总有两个实数根;(2)∵原方程的两根为x1、x2,∴x1+x2=5,x1x2=6-p2-p.又∵x12+x22-x1x2=3p2+1,∴(x1+x2)2-3x1x2=3p2+1,∴52-3(6-p2-p)=3p2+1,∴25-18+3p2+3p=3p2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x12+x22-x1x2=3p2+1,求出p值.19、详见解析【解题分析】
根据平行四边形的性质和已知条件证明△ABE≌△CDF,再利用全等三角形的性质:即可得到AE=CF.【题目详解】证:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,又∵BE=DF,∴△ABE≌△CDF,∴AE=CF.(其他证法也可)20、,.【解题分析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.【题目详解】解:原式当时原式【题目点拨】考查分式的混合运算,掌握运算顺序是解题的关键.21、(1)m=3;(2)(-1,0),(3,0)【解题分析】试题分析:(1)由抛物线y=﹣x2+(m﹣1)x+m与y轴交于(0,1)得:m=1.∴抛物线为y=﹣x2+2x+1=﹣(x﹣1)2+2.列表得:
X
﹣1
0
1
2
1
y
0
1
2
1
0
图象如下.(2)由﹣x2+2x+1=0,得:x1=﹣1,x2=1.∴抛物线与x轴的交点为(﹣1,0),(1,0).∵y=﹣x2+2x+1=﹣(x﹣1)2+2∴抛物线顶点坐标为(1,2).(1)由图象可知:当﹣1<x<1时,抛物线在x轴上方.(2)由图象可知:当x>1时,y的值随x值的增大而减小考点:二次函数的运用22、(1)骑自行车的人数多,多50人;(2)学校准备的600个自行车停车位不足够,理由见解析【解题分析】分析:(1)根据乘公交车的人数除以乘公交车的人数所占的比例,可得调查的样本容量,根据样本容量乘以自行车所占的百分比,可得骑自行车的人数,根据有理数的减法,可得答案;(2)根据学校总人数乘以骑自行车所占的百分比,可得答案.详解:(1)乘公交车所占的百分比=,调查的样本容量50÷=300人,骑自行车的人数300×=100人,骑自行车的人数多,多100﹣50=50人;(2)全校骑自行车的人数2400×=800人,800>600,故学校准备的600个自行车停车位不足够.点睛:本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.23、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解题分析】
(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【题目详解】解:(1)根据条形图2+5+7+8+3=25(人),
m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年高端装备制造研发合同
- 2025年度二零二五木坑果场承包经营与农产品出口合同3篇
- 2024建材销售合作协议书范本
- 2024虚拟现实游戏内容制作及授权合同
- 2024年电厂煤炭供应与支付条款标准协议版B版
- 2024年跨境电商仓储物流合同
- 2024年项目投资与合作合同
- 2025年度智能家居系统设计与装修合同范本3篇
- 2025便利店品牌授权与区域管理合同范本3篇
- 2024年环保项目投资合同投资金额与环保效果
- 幼儿园安保培训记录表2018年秋
- 浙江国辐环保科技中心放射性同位素销售项目环境影响报告
- 保障房出租运营方案
- 高血压急症的急救与护理pt
- 【表格】新员工岗前培训记录表
- 医学伦理学-南方医科大学中国大学mooc课后章节答案期末考试题库2023年
- 医疗安全(不良)事件总结分析会议记录
- 建筑用砂采石场安全生产综合应急预案
- 自来水厂水厂自控方案
- 2023-2024学年浙江省义乌市小学语文五年级期末自测考试题附参考答案和详细解析
- 房屋市政工程生产安全重大事故隐患判定标准、预防措施、追责建议
评论
0/150
提交评论