![2023年中考数学复习 专题15 三角形及其性质(14个高频考点)(举一反三)(全国通用)(学生版)_第1页](http://file4.renrendoc.com/view10/M03/19/23/wKhkGWVqsz6AJyIxAAIcRNm7Sm0273.jpg)
![2023年中考数学复习 专题15 三角形及其性质(14个高频考点)(举一反三)(全国通用)(学生版)_第2页](http://file4.renrendoc.com/view10/M03/19/23/wKhkGWVqsz6AJyIxAAIcRNm7Sm02732.jpg)
![2023年中考数学复习 专题15 三角形及其性质(14个高频考点)(举一反三)(全国通用)(学生版)_第3页](http://file4.renrendoc.com/view10/M03/19/23/wKhkGWVqsz6AJyIxAAIcRNm7Sm02733.jpg)
![2023年中考数学复习 专题15 三角形及其性质(14个高频考点)(举一反三)(全国通用)(学生版)_第4页](http://file4.renrendoc.com/view10/M03/19/23/wKhkGWVqsz6AJyIxAAIcRNm7Sm02734.jpg)
![2023年中考数学复习 专题15 三角形及其性质(14个高频考点)(举一反三)(全国通用)(学生版)_第5页](http://file4.renrendoc.com/view10/M03/19/23/wKhkGWVqsz6AJyIxAAIcRNm7Sm02735.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题15三角形及其性质(14个高频考点)(举一反三)TOC\o"1-1"\h\u【考点1三角形的三边关系】 1【考点2三角形的角平分线、中线、高】 2【考点3三角形的内角和定理】 3【考点4三角形的外角性质】 5【考点5等腰三角形的判定与性质】 7【考点6等边三角形的判定与性质】 10【考点7含30度角的直角三角形的性质】 12【考点8角平分线的判定与性质】 14【考点9垂直平分线的判定与性质】 15【考点10勾股定理】 17【考点11勾股定理的逆定理】 19【考点12勾股定理的应用】 20【考点13直角三角形斜边的中线的性质】 22【考点14三角形中位线的定理】 23【要点1三角形的三边关系】三角形两边的和大于第三边,两边的差小于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【考点1三角形的三边关系】【例1】(2022·河北·统考中考真题)平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是(
)A.1 B.2 C.7 D.8【变式1-1】(2022·江苏淮安·统考中考真题)下列长度的三条线段能组成三角形的是(
)A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【变式1-2】(2022·四川德阳·统考中考真题)八一中学校九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km和3km.那么杨冲,李锐两家的直线距离不可能是(A.1km B.2km C.3km【变式1-3】(2022·全国·九年级专题练习)如果方程(x−1)(x【考点2三角形的角平分线、中线、高】【例2】(2022·浙江·模拟预测)如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H,下面说法正确的是(
)①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④BH=CH.A.①②③④ B.①②③ C.②④ D.①③【变式2-1】(2022·浙江杭州·统考中考真题)如图,CD⊥AB于点D,已知∠ABC是钝角,则(
)A.线段CD是△ABC的AC边上的高线 B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线 D.线段AD是△ABC的AC边上的高线【变式2-2】(2022·江苏常州·统考中考真题)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD的面积是______.【变式2-3】(2022·湖北荆门·统考中考真题)如图,点G为△ABC的重心,D,E,F分别为BC,CA,AB的中点,具有性质:AG:GD=BG:GE=CG:GF=2:1.已知△AFG的面积为3,则△ABC的面积为_____.【要点2三角形的内角和定理】三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.三角形内角和定理:三角形内角和是180°.【考点3三角形的内角和定理】【例3】(2022·浙江绍兴·统考中考真题)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.【变式3-1】(2022·湖北黄石·统考中考真题)如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【变式3-2】(2022·浙江丽水·校联考三模)如图,△ABC中,AD平分∠BAC交BC于点D,在射线AB上截取AE=AC,过点E作EF∥BC交直线AD于点(1)试判断四边形CDEF是何种特殊的四边形?并证明你的结论;(2)当AB>AC,∠ABC=20°时,四边形CDEF能是正方形吗?如果能,求出此时∠BAC的度数;如果不能,试说明理由;(3)题目改为“AD平分∠BAC的外角交直线BC于点D,在射线AB的反向延长线上截取AE=AC”,设∠ABC=x.其他条件不变,四边形CDEF能是正方形吗?如果能,求出此时∠BAC的度数(用关于x的关系式表示);如果不能,试说明理由.【变式3-3】(2022·浙江宁波·统考一模)一个角的余角的两倍称为这个角的倍余角.(1)若∠1=30°,∠2是∠1的倍余角,则∠2的度数为;若∠1=α,∠2是∠1的倍余角,则∠2的度数为;(用α的代数式表示)(2)如图1,在△ABC中,AC>BC,在AC上截取CD=CB,在AB上截取AE=AD.求证:∠ABC是∠EDB的倍余角;(3)如图2,在(2)的情况下,作BF∥DE交AC于点F,将△BFC沿BF折叠得到ΔBFC′,BC′交AC于点P【要点3三角形的外角】三角形外角的概念:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.【要点4三角形的外角性质】①三角形的外角和为360°;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于和它不相邻的任何一个内角.【考点4三角形的外角性质】【例4】(2022·浙江宁波·校考模拟预测)如图1,在△ABC中,∠C=90°,∠B=30°,作∠CAB平分线AF交BC于点F,以AF为边作等腰直角△AFE,且∠AFE=90°,如图2将△AFE绕点F每秒3°的速度顺时针旋转得到三角形DFE(当点D落在射线FB上时停止旋转),则旋转时间为t秒.(1)当t=秒,DE∥AB;(2)在旋转过程中,DF与AB的交点记为M,如图3,若△AMF为等腰三角形,求t的值;(3)当边DE与边AB、BC分别交于点P、Q时,如图4,连接AE,设∠BAE=x°,∠AED=y°,∠DFB=z°,试探究x,y,z之间的关系.【变式4-1】(2022·浙江绍兴·一模)(1)问题背景如图①,Rt△ABC中,∠BAC=90°,AB=AC,∠ABC的平分线交直线AC于D,过点C作CE⊥BD,交直线BD于E,CE交直线BA于M.探究线段BD与CE的数量关系得到的结论是________.(2)类比探索在(1)中,如果把BD改为△ABC的外角∠ABF的平分线,其他条件均不变(如图②),(1)中的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.(3)拓展延伸在(2)中,如果AB=12AC,其他条件均不变(如图③),请直接写出BD【变式4-2】(2022·四川内江·统考模拟预测)探究与发现:如图1所示的图形,像我们常见的学习用品——圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC与∠A、∠B(2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,若∠A=50°②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,③如图4,∠ABD,∠ACD的10等分线相交于点G1,G2,…,G9,若∠【变式4-3】(2022·四川成都·四川省成都市七中育才学校校考二模)(1)[模型研究]如图①,在△ABC中,AB=AC,D为边BA延长线上一点,且∠C=n°.则∠CAD=______°;(2)[模型应用]如图②,在△ABC中,∠ABC=2∠ACB.若AB=3,BC=5,求AC的长;(3)[模型迁移]如图③,点P为△ABC边AC上一点,∠PBC=13∠ABC=14∠BPC,CD⊥BP,交BP的延长线于D.若【要点5等腰三角形】(1)定义:有两边相等的三角形,叫做等腰三角形.(2)等腰三角形性质①等腰三角形的两个底角相等,即“等边对等角”;②等腰三角形顶角的平分线、底边上的中线与底边上的高线互相重合(简称“三线合一”).特别地,等腰直角三角形的每个底角都等于45°.(3)等腰三角形的判定如果一个三角形有两个角相等,那么这两个角所对的边也相等(即“等角对等边”).【考点5等腰三角形的判定与性质】【例5】(2022·江苏泰州·模拟预测)过三角形的顶点作射线与其对边相交,将三角形分成两个三角形.若得到的两个三角形中有等腰三角形,这条射线就叫做原三角形的“友好分割线”.(1)下列三角形中,不存在“友好分割线”的是______(只填写序号).①等腰直角三角形;②等边三角形;③顶角为150°的等腰三角形.(2)如图1,在△ABC中,∠A=60°,∠B=40°,直接写出△ABC被“友好分割线”分得的等腰三角形顶角的度数;(3)如图2,△ABC中,∠A=30°,CD为AB边上的高,BD=2,E为AD的中点,过点E作直线l交AC于点F,作CM⊥l,DN⊥l,垂足为M,N.若射线CD为△ABC的“友好分割线”,求CM+DN的最大值.【变式5-1】(2022·山东威海·模拟预测)如图,在平面直角坐标系中,已知两点Am,0,B0,nn>m>0,点C在第一象限,AB⊥BC,BC=BA,点P在线段OB上,OP=OA,AP的延长线与CB的延长线交于点M,AB与CP(1)点C的坐标为:______(用含m,n的式子表示);(2)求证:BM=BN;(3)设点C关于直线AB的对称点为D,点C关于直线AP的对称点为G,求证:D,G关于x轴对称.【变式5-2】(2022·青海·统考中考真题)两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来,则形成一组全等的三角形,把具有这个规律的图形称为“手拉手”图形.(1)问题发现:如图1,若△ABC和△ADE是顶角相等的等腰三角形,BC,DE分别是底边.求证:BD=CE;
图1(2)解决问题:如图2,若△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一条直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系并说明理由.
图2【变式5-3】(2022·甘肃兰州·统考中考真题)综合与实践,【问题情境】:数学活动课上,老师出示了一个问题:如图1,在正方形ABCD中,E是BC的中点,AE⊥EP,EP与正方形的外角△DCG的平分线交于P点.试猜想AE与EP的数量关系,并加以证明;(1)【思考尝试】同学们发现,取AB的中点F,连接EF可以解决这个问题.请在图1中补全图形,解答老师提出的问题.(2)【实践探究】希望小组受此问题启发,逆向思考这个题目,并提出新的问题:如图2,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接CP,可以求出∠DCP的大小,请你思考并解答这个问题.(3)【拓展迁移】突击小组深入研究希望小组提出的这个问题,发现并提出新的探究点:如图3,在正方形ABCD中,E为BC边上一动点(点E,B不重合),△AEP是等腰直角三角形,∠AEP=90°,连接DP.知道正方形的边长时,可以求出△ADP周长的最小值.当AB=4时,请你求出△ADP周长的最小值.【要点6等边三角形】(1)定义:三条边都相等的三角形,叫做等边三角形.(2)等边三角形性质:等边三角形的三个角相等,并且每个角都等于60°.(3)等边三角形的判定:①三条边都相等的三角形是等边三角形;②三个角都相等的三角形是等边三角形;③有一个角为60°的等腰三角形是等边三角形.【考点6等边三角形的判定与性质】【例6】(2022·江苏无锡·无锡市天一实验学校校考模拟预测)如图,在平面直角坐标系中,O是坐标原点,等边三角形AOB的顶点A的坐标为4,0,动点P从点O出发,以每秒2个单位的速度,沿O→A路线向终点A匀速运动,设运动时间为t秒,连接BP,线段BP的中点为点Q,将线段PQ绕点P顺时针旋转60°得到线段PC,连接AC.(1)求证:∠CPA=∠OBP;(2)当t=23时,求点(3)在点P的运动过程中,△PCA能否成为直角三角形?若能,直接写出满足条件的所有t的值;若不能,说明理由;(4)在点P从起点O向终点A运动的过程中,直接写出点C所经过的路径长.【变式6-1】(2022·四川南充·模拟预测)如图,△ABC是等边三角形,CF⊥AC交AB的延长线于点F,G为BC的中点,射线AG交CF于D,E在CF上,CE=AD,连接BD,BE.求证:△BDE【变式6-2】(2022·山东东营·统考中考真题)△ABC和△ADF均为等边三角形,点E、D分别从点A,B同时出发,以相同的速度沿AB、BC运动,运动到点B、C停止.(1)如图1,当点E、D分别与点A、B重合时,请判断:线段CD、EF的数量关系是____________,位置关系是____________;(2)如图2,当点E、D不与点A,B重合时,(1)中的结论是否依然成立?若成立,请给予证明;若不成立,请说明理由;(3)当点D运动到什么位置时,四边形CEFD的面积是△ABC面积的一半,请直接写出答案;此时,四边形BDEF是哪种特殊四边形?请在备用图中画出图形并给予证明.【变式6-3】(2022·山东济南·统考中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.【要点7含30°角的直角三角形】在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。【考点7含30度角的直角三角形的性质】【例7】(2022·四川攀枝花·统考中考真题)如图1是第七届国际数学教育大会(ICME)的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能够组合得到如图2所示的四边形OABC.若OC=5,BC=1,∠AOB=30°,则OA的值为(
A.3 B.32 C.2 【变式7-1】(2022·江苏南通·统考中考真题)如图,在▱ABCD中,对角线AC,BD相交于点O,AC⊥BC,BC=4,∠ABC=60°,若EF过点O且与边AB,CD分别相交于点E,F,设BE=x,OE2=y,则y关于xA. B. C. D.【变式7-2】(2022·辽宁锦州·统考中考真题)如图,A1为射线ON上一点,B1为射线OM上一点,∠B1A1O=60°,OA1=3,B1A1=1.以B1A1为边在其右侧作菱形A1B1C1D1,且∠B1A1D1=60°,C1D1与射线OM交于点B2,得△C1【变式7-3】(2022·辽宁锦州·中考真题)在△ABC中,AC=BC,点D在线段AB上,连接CD并延长至点E,使DE=CD,过点E作EF⊥AB,交直线AB于点F.(1)如图1,若∠ACB=120°,请用等式表示AC与EF的数量关系:____________.(2)如图2.若∠ACB=90°,完成以下问题:①当点D,点F位于点A的异侧时,请用等式表示AC,AD,DF之间的数量关系,并说明理由;②当点D,点F位于点A的同侧时,若DF=1,AD=3,请直接写出AC的长.【要点8角平分线的性质】角的平分线的性质:角的平分线上的点到角两边的距离相等.
用符号语言表示角的平分线的性质定理:
若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.【要点9角平分线的判定】角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.用符号语言表示角的平分线的判定:
若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB
【考点8角平分线的判定与性质】【例8】(2022·湖北省直辖县级单位·中考真题)如图,已知△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=90°,BD,CE交于点F,连接AF,下列结论:①BD=CE;②BF⊥CF;③AF平分∠CAD;④∠AFE=45°.其中正确结论的个数有(
)A.1个 B.2个 C.3个 D.4个【变式8-1】(2022·湖北襄阳·统考中考真题)如图,在△ABC中,D是AC的中点,△ABC的角平分线AE交BD于点F,若BF:FD=3:1,AB+BE=33,则△ABC的周长为_____.【变式8-2】(2022·山东青岛·统考中考真题)如图,已知△ABC,AB=AC,BC=16,AD⊥BC,∠ABC的平分线交AD于点E,且DE=4.将∠C沿GM折叠使点C与点E恰好重合.下列结论正确的有:__________(填写序号)①BD=8②点E到AC的距离为3③EM=④EM∥AC【变式8-3】(2022·湖北武汉·统考中考真题)已知CD是△ABC的角平分线,点E,F分别在边AC,BC上,AD=m,BD=n,△ADE与△BDF的面积之和为S.(1)填空:当∠ACB=90°,DE⊥AC,DF⊥BC时,①如图1,若∠B=45°,m=52,则n=_____________,S=②如图2,若∠B=60°,m=43,则n=_____________,S=(2)如图3,当∠ACB=∠EDF=90°时,探究S与m、n的数量关系,并说明理由:(3)如图4,当∠ACB=60°,∠EDF=120°,m=6,n=4时,请直接写出S的大小.【要点10线段垂直平分线的性质】线段垂直平分线上的点与这条线段两个端点的距离相等.反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.【要点11线段垂直平分线的判定】到一条线段两个端点距离相等的点,在这条线段的垂直平分线上,(这样的点需要找两个)【考点9垂直平分线的判定与性质】【例9】(2022·四川巴中·统考中考真题)如图,在菱形ABCD中,分别以C、D为圆心,大于12CD为半径画弧,两弧分别交于点M、N,连接MN,若直线MN恰好过点A与边CD交于点E,连接BE,则下列结论错误的是(A.∠BCD=120° B.若AB=3,则BE=4C.CE=12BC【变式9-1】(2022·山东淄博·统考中考真题)如图,在△ABC中,AB=AC,∠A=120°.分别以点A和C为圆心,以大于12AC的长度为半径作弧,两弧相交于点P和点Q,作直线PQ分别交BC,AC于点D和点E.若CD=3,则BD的长为(
A.4 B.5 C.6 D.7【变式9-2】(2022·全国·八年级专题练习)如图,等边△ABC中,AB=10,点E为高AD上的一动点,以BE为边作等边△BEF,连接DF,CF,则∠BCF=______________,FB+FD的最小值为______________.【变式9-3】(2022·陕西·统考中考真题)问题提出(1)如图1,AD是等边△ABC的中线,点P在AD的延长线上,且AP=AC,则∠APC的度数为__________.问题探究(2)如图2,在△ABC中,CA=CB=6,∠C=120°.过点A作AP∥BC,且AP=BC,过点P作直线l⊥BC,分别交AB、BC于点O、E,求四边形OECA的面积.问题解决(3)如图3,现有一块△ABC型板材,∠ACB为钝角,∠BAC=45°.工人师傅想用这块板材裁出一个△ABP型部件,并要求∠BAP=15°,AP=AC.工人师傅在这块板材上的作法如下:①以点C为圆心,以CA长为半径画弧,交AB于点D,连接CD;②作CD的垂直平分线l,与CD于点E;③以点A为圆心,以AC长为半径画弧,交直线l于点P,连接AP、BP,得△ABP.请问,若按上述作法,裁得的△ABP型部件是否符合要求?请证明你的结论.【要点12勾股定理】在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=【考点10勾股定理】【例10】(2022·江苏镇江·统考中考真题)如图,点A、B、C、D在网格中小正方形的顶点处,AD与BC相交于点O,小正方形的边长为1,则AO的长等于(
)A.2 B.73 C.625【变式10-1】(2022·江苏徐州·统考中考真题)如图,将矩形纸片ABCD沿CE折叠,使点B落在边AD上的点F处.若点E在边AB上,AB=3,BC=5,则AE=________.【变式10-2】(2022·辽宁阜新·统考中考真题)已知,四边形ABCD是正方形,△DEF绕点D旋转(DE<AB),∠EDF=90°,DE=DF,连接AE,CF.(1)如图1,求证:△ADE≌△CDF;(2)直线AE与CF相交于点G.①如图2,BM⊥AG于点M,BN⊥CF于点N,求证:四边形BMGN是正方形;②如图3,连接BG,若AB=4,DE=2,直接写出在△DEF旋转的过程中,线段BG长度的最小值.【变式10-3】(2022·辽宁鞍山·统考中考真题)如图,在△ABC中,AB=AC,∠BAC=120°,点D在直线AC上,连接BD,将DE绕点D逆时针旋转120°,得到线段DE,连接BE,CE.(1)求证:BC=3(2)当点D在线段AC上(点D不与点A,C重合)时,求CEAD(3)过点A作AN∥DE交BD于点N,若AD=2CD,请直接写出【要点13勾股定理的逆定理】如果三角形的三边长a,b,c满足a2+b2=【考点11勾股定理的逆定理】【例11】(2022·湖南·统考中考真题)如图,点O是等边三角形ABC内一点,OA=2,OB=1,OC=3,则ΔAOB与ΔBOCA.34 B.32 C.33【变式11-1】(2022·山东日照·统考中考真题)如图1,△ABC是等腰直角三角形,AC=BC=4,∠C=90°,M,N分别是边AC,BC上的点,以CM,CN为邻边作矩形PMCN,交AB于E,F.设CM=a,CN=b,若ab=8.(1)判断由线段AE,EF,BF组成的三角形的形状,并说明理由;(2)①当a=b时,求∠ECF的度数;②当a≠b时,①中的结论是否成立?并说明理由.【变式11-2】(2022·吉林长春·统考中考真题)如图①、图②、图③均是5×5的正方形网格,每个小正方形的边长均为1,其顶点称为格点,△ABC的顶点均在格点上.只用无刻度的直尺,在给定的网格中,按下列要求作图,保留作图痕迹.(1)网格中△ABC的形状是________;(2)在图①中确定一点D,连结DB、DC,使△DBC与△ABC全等:(3)在图②中△ABC的边BC上确定一点E,连结AE,使△ABE∽△CBA:(4)在图③中△ABC的边AB上确定一点P,在边BC上确定一点Q,连结PQ,使△PBQ∽△ABC,且相似比为1:2.【变式11-3】(2022·北京·统考中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2【考点12勾股定理的应用】【例12】(2022·江苏苏州·校考一模)一艘渔船从港口A沿北偏东60°方向航行60海里到达C处时突然发生故障,位于港口A正东方向的B处的救援艇接到信号后,立即沿北偏东45°方向以40海里/小时的速度前去救援,救援艇到达C处所用的时间为(
)A.32小时 B.23小时 C.334小时【变式12-1】(2022·福建福州·福建省福州教育学院附属中学校考模拟预测)我国古代数学著作《九章算术》中记载这样一个问题,原文是:“今有立木,系索其末,委地三尺.引索却行,去本八尺而索尽.问索长几何?”译文为;“现在有一根直立的木柱,用一根绳索绑住木柱的顶端,另一端自由下垂,则绳索比木柱多三尺;将绳索的另一端靠地拉直,此时距离木柱的底端八尺,问这条绳索的长度是多少?”根据题意,求得绳索的长度是(
)A.916尺 B.9尺 C.12尺 D.121【变式12-2】(2022·四川绵阳·校联考中考模拟)如图,长、宽、高分别为2,1,1的长方体木块上有一只蚂蚁从顶点A出发沿着长方体的外表面爬到顶点B,则它爬行的最短路程是(
)A.10 B.3 C.5 D.2【变式12-3】(2022·山东济宁·统考一模)如图,在东西方向的海面线MN上,有A,B两艘巡逻船和观测点D(A,B,D在直线MN上),两船同时收到渔船C在海面停滞点发出的求救信号.测得渔船分别在巡逻船A,B北偏西30°和北偏东45°方向,巡逻船A和渔船C相距120海里,渔船在观测点D北偏东15°方向.(说明:结果取整数.参考数据:2≈1.41,3(1)求巡逻船B与观测点D间的距离;(2)已知观测点D处45海里的范围内有暗礁.若巡逻船B沿BC方向去营救渔船C有没有触礁的危险?并说明理由.【要点14直角三角形斜边的中线】在直角三角形中,斜边上的中线等于斜边的一半。【考点13直角三角形斜边的中线的性质】【例13】(2022·江苏南通·统考中考真题)如图,点O是正方形ABCD的中心,AB=32.Rt△BEF中,∠BEF=90°,EF过点D,BE,BF分别交AD,CD于点G,M,连接OE,OM,EM.若BG=DF,tan∠ABG=【变式13-1】(2022·青海西宁·统考中考真题)如图,△ABC中,AB=6,BC=8,点D,E分别是AB,AC的中点,点F在DE上,且∠AFB=90°,则EF=________.【变式13-2】(2022·辽宁鞍山·统考中考真题)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D,E分别在AB,BC上,将△BDE沿直线DE翻折,点B的对应点B′恰好落在AB上,连接CB′,若
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年专业财务代理记账合作协议
- 2025年区域快递服务承包经营合同范本
- 2025年临时宿舍租赁协议书
- 2025年员工投资策划入股合作协议书
- 2025年区域间互惠协议规范
- 2025年云计算服务购销合同模板
- 2025年度股东垫付资金互助协议书模板
- 2025年信用协议示范文本索取
- 2025年个人经营店铺质押贷款合同样本
- 2025年企业人力资源专员聘用合同样本
- 三年级数学-解决问题策略(苏教版)
- 园艺疗法共课件
- DB33T 628.1-2021 交通建设工程工程量清单计价规范 第1部分:公路工程
- 医院-9S管理共88张课件
- 设立登记通知书
- 2022医学课件前列腺炎指南模板
- MySQL数据库项目式教程完整版课件全书电子教案教材课件(完整)
- 药品生产质量管理工程完整版课件
- 《网络服务器搭建、配置与管理-Linux(RHEL8、CentOS8)(微课版)(第4版)》全册电子教案
- 职业卫生教学课件生物性有害因素所致职业性损害
- 降“四高”健康教育课件
评论
0/150
提交评论