勾股定理竟然引发了第一次数学危机_第1页
勾股定理竟然引发了第一次数学危机_第2页
勾股定理竟然引发了第一次数学危机_第3页
勾股定理竟然引发了第一次数学危机_第4页
勾股定理竟然引发了第一次数学危机_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

勾股定理竟然引发了第一次数学危机?中国科普博览18-08-2713:05从某种角度来说,数学不能出现矛盾,也不能出现危机。不幸的是,在两千多年的历史进程里,坚如磐石的数学大厦仍然出现了裂痕。第一次数学危机,就诞生在人们对整数和几何的认识之中。长久以来,数学都是精密、严格、准确的象征。人类非理性的行为主导了社会、政治、经济、文化等领域的蓬勃发展,而在理性统治的时代,现代科学也在不断用实验和数据支撑或者反驳前人的论断,从而引领人们走向一条自我进化之路。路的远方只能无限接近真理,却永远无法抵达那里。于是,在世间万物变化无穷的表象之下,数学成了人们最后确定性的倚靠。如果数学的根基被动摇,人类认识世界的逻辑基础就可能被颠覆。当一加一不再等于二,人类文明构建的宏伟大厦即可能在顷刻之间坍塌,所有固若金汤、坚不可摧的真理信条也会在瞬间失去存在的理由。世间一切文明亦会在一夜之间灰飞烟灭。宇宙最终只能沉寂于混沌的深渊。从某种角度来说,数学不能出现矛盾,也不能出现危机。数学,就是人类文明最后的避风港。不幸的是,在两千多年的历史进程里,坚如磐石的数学大厦仍然出现了裂痕。人们在无意之间凿开的罅隙却很快激发连锁反应,最终引起科学界的大地震。无数历史上最杰出的科学大家加入了修补大厦的工作,为挽救数学的完美与精确而殚精竭虑。等到危机过去,人们才发现,数学并不是无瑕的美玉,也并非无所不能的利器。数学理论即便可以帮助人们迈入天翻地覆的文明,但是在认识宇宙终极真理的道路上,它一样无能为力。甚至连数学本身,也并非无懈可击。人们总能在构建数学王国的砖石中,找到那些无可避免的残缺。曾几何时,在人类匍匐在真理的道路探寻未来时,数学带来过光明。在科学尚在蒙昧的襁褓阶段时,数学也曾哺乳过文明。历史上,数学就是人类文明最忠实可靠的朋友。然而这位朋友,却经历过人们三次血与火的洗礼。幸运的是,每一次,它都将自己一部分最深邃的秘密展现给信仰追随它的人们。每一次的危机都带来人们观念上的革命,每一次革命都让后人更加了解数学——人类文明的守护者,更真实的内心。让我们重回历史上那三次危机的现场。危机的导火索,却是那样的漫不经心。一切仿佛都在印证,真理给予人类的恩赐,同样都是有心栽花花不开,无意插柳柳成荫。(一)无理数的觉醒-毕达哥拉斯的怒火数与形,是人类最早认识世界的基础。因此,作为数的代表-整数与事物形状的代表-几何,就这样进入人们理性思辨的世界。第一次数学危机,就诞生在人们对整数和几何的认识之中。"根号2是否是有理数"这样一个问题,引起了古希腊先贤们的争论,并逐渐演变成一场巨大的风波,最终竟然引导古希腊的数学走向了一条截然不同的发展道路。事件的起因,却要从勾股定理说起。公元前5世纪,古希腊的天才人物毕达哥拉斯(Pythagoras)创建了宗教、政治、学术合一的毕达哥拉斯学派。其主要的研究涵盖几何、算术、天文和音乐,并在其中追求宇宙和谐统一的规律。(图片来源:搜狗百科)△毕达哥拉斯学派彼时,毕达哥拉斯学派对整数有着异乎寻常的信仰。他们发现,大自然很多事物都可以通过数量的大小和关系进行解释和说明。这种对整数的痴迷就来源于音乐的启迪。一次偶然的经历,毕达哥拉斯意识到音乐中音调的和谐完全由整数之比决定。音乐和数这看起来毫无关联的事物居然通过整数连接在了一起,这让毕达哥拉斯受到很大启发,并由此断言宇宙万物都可归结于整数或者整数之比(注:毕达哥拉斯时代的整数指代自然数)。这成了后来毕达哥拉斯学派的信条之一:一切事物都按照数来安排。具体而言,万物都是整数或者整数之比的和谐产物。进一步,宇宙的本质就在于整数的和谐。与此同时,数学历史上最伟大的定理之一-勾股定理-也诞生在毕达哥拉斯学派对几何学孜孜不倦的追求之中。所谓"勾股定理",就是一个直角三角形三边长必须满足的数量关系,即斜边长的平方等于长与宽各自的平方之和。这与古代中国独立发现的"勾三股四弦五"的特例有异曲同工之妙。意外的是,这一成就毕达哥拉斯千古英名的定理却也成了该学派信仰的"掘墓人"。勾股定理示意图△(图片来源:)由于相信万物都是整数或者整数之比,那么两条几何线段长度之间的比值,其结果也必然是整数之比。这也意味着存在第三条线段,能同时量尽事先给定的两条线段。这种性质被毕达哥拉斯学派称为"可通约"。基于对整数的信条,他们认为任何两条线段都是可通约的。直到"不可通约量"的发现,终于引起了该学派巨大的信仰危机。这一"离经叛道"的结果,却是由毕达哥拉斯的学生希帕索斯(Hippasus)做出的。希帕索斯考虑一个边长为1的等边直角三角形,根据勾股定理,其斜边长应该是"2的平方根"。如果毕达哥拉斯学派的断言是正确的,那么直边和斜边应该是可通约的,因此存在一个有理数(即整数之比),恰好等于"根号2"。希帕索斯很快就证明,这是一个矛盾的结论。他兴高采烈地将自己的非凡发现告诉老师毕达哥拉斯。在经过仔细的检查之后,毕达哥拉斯进入了"两难"的境地。要么承认希帕索斯颠覆性的结论,从而推翻他的数学与哲学的信条;要么违背理性的原则,坚决反对这一发现。左右为难之下,毕达哥拉斯将其视为学派的秘密,下令禁止传播这一结论。事情的发展还是超乎毕达哥拉斯的预料,希帕索斯最终将发现泄露出去,从而激怒了毕达哥拉斯。毕达哥拉斯随后下令处死他的学生。希帕索斯最终为此付出生命的代价,将一腔热血献祭给了第一次数学危机。这一认识上的危机给古希腊的数学带来巨大的地震。为了维护学派的信仰,毕达哥拉斯认定类似于"根号2"这样的数是不可说、也无定形的数,其秘密属于众神的范畴,凡人不应该接触和认识到这些数的存在。这些数被称为"没有理性的数",它们的存在即宣告了无理数的诞生。第一次数学危机持续了2000多年。公元前3世纪,毕达哥拉斯学派的欧多克斯(Eudoxus)试图通过在几何学中引进不可通约量的概念来解决它的矛盾。他认为,几何线段先天就存在着"可通约"和"不可通约"的限制,这在某种程度上大大拓展了人们对数的认识,也为无理数找到了存在的基础。直到1872年,德国数学家戴德金(Dedekind)从连续性的要求出发,通过有理数的"分割"来定义无理数,并把实数理论建立在严格的分析基础上,才揭开了无理数的神秘面纱,从而结束了无理数被认为"无理"的时代,也结束了自古希腊时代就延续至今的数学史上的第一次大危机。(图片来源:百度百科)△德国数学家利乌斯·威廉·理查德·戴德金(JuliusWilhelmRichardDedekind,1831-1916)第一次数学危机诞生于几何学。万物皆依赖于整数的思想被瓦解,几何学的地位开始擢升。古希腊人开始明白知觉和经验的局限性,一切真理只有通过推理和证明才能确保可靠。此后,演绎和推理的方式逐渐登上古希腊科学的舞台,在此基础上建立的几何公理体系让希腊民族走向了以欧几里得(Euclid)和亚里士多德(Aristotle)为代表的逻辑论证之

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论