![专题04 有理数范围内的定义新运算(解析版)_第1页](http://file4.renrendoc.com/view10/M02/30/26/wKhkGWVqd1iAVL15AAGUEpJYZdE500.jpg)
![专题04 有理数范围内的定义新运算(解析版)_第2页](http://file4.renrendoc.com/view10/M02/30/26/wKhkGWVqd1iAVL15AAGUEpJYZdE5002.jpg)
![专题04 有理数范围内的定义新运算(解析版)_第3页](http://file4.renrendoc.com/view10/M02/30/26/wKhkGWVqd1iAVL15AAGUEpJYZdE5003.jpg)
![专题04 有理数范围内的定义新运算(解析版)_第4页](http://file4.renrendoc.com/view10/M02/30/26/wKhkGWVqd1iAVL15AAGUEpJYZdE5004.jpg)
![专题04 有理数范围内的定义新运算(解析版)_第5页](http://file4.renrendoc.com/view10/M02/30/26/wKhkGWVqd1iAVL15AAGUEpJYZdE5005.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04有理数范围内的定义新运算类型一和绝对值有关1.在有理数的范围内,我们定义三个数之间的新运算“☆”法则:.如:.(1)计算:.(2)计算:.(3)在,,,…,,,,,…,,这个数中:①任取三个数作为a,b,c的值,进行“”运算,求所有计算结果中的最小值;②若将这个数任意分成五组,每组三个数,进行“”运算,得到五个不同的结果,由于分组不同,所有五个运算的结果也不同,请直接写出五个结果之和的最大值.【答案】(1)4;(2)3;(3)①当,,时,可取最小值为;②.【解析】【分析】(1)根据新运算法则列式计算即可;(2)根据新运算法则列式计算即可;(3)①分类讨论,,化简求得原式的最小值;②将,,,分别赋予和,同时赋予四个负数,最后一组,同时,为两个负数,分别进行计算,从而求解.【详解】解:(1)根据题意:;故答案为:4;(2)根据题意得:;故答案为:3;(3)①当时,,当时,,当,,时,可取最小值为,即的最小值为;②当,,时,此时,;当,,时,此时,;当,,时,此时,;当,,时,此时,;当,,时,此时,;即五个结果的最大值为.【点睛】本题考查有理数的混合运算,整式的加减运算,理解新定义运算法则及绝对值的意义,发现当时,,当时,是解题关键.2.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x1,x2,x3,称为数列x1,x2,x3.计算|x1|,,,将这三个数的最小值称为数列x1,x2,x3的最佳值.例如,对于数列2,-1,3,因为|2|=2,=,=,所以数列2,-1,3的最佳值为.东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳值的最小值为.根据以上材料,回答下列问题:(1)数列-4,-3,1的最佳值为(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为,取得最佳值最小值的数列为(写出一个即可);(3)将2,-9,a(a>1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a的值.【答案】(1)3;(2);-3,2,-4或2,-3,-4.(3)a=11或4或10.【解析】【分析】(1)根据上述材料给出的方法计算其相应的最佳值为即可;(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;(3)分情况算出对应的数值,建立方程求得a的数值即可.【详解】(1)因为|−4|=4,=3.5,=3,所以数列−4,−3,1的最佳值为3.故答案为3;(2)对于数列−4,−3,2,因为|−4|=4,=,=,所以数列−4,−3,2的最佳值为;对于数列−4,2,−3,因为|−4|=4,=1,=,所以数列−4,2,−3的最佳值为1;对于数列2,−4,−3,因为|2|=2,=1,=,所以数列2,−4,−3的最佳值为1;对于数列2,−3,−4,因为|2|=2,=,=,所以数列2,−3,−4的最佳值为∴数列的最佳值的最小值为=,数列可以为:−3,2,−4或2,−3,−4.故答案为,−3,2,−4或2,−3,−4.(3)当=1,则a=0或−4,不合题意;当=1,则a=11或7;当a=7时,数列为−9,7,2,因为|−9|=9,=1,=0,所以数列2,−3,−4的最佳值为0,不符合题意;当=1,则a=4或10.∴a=11或4或10.【点睛】此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.3.阅读下列两则材料:材料1:君君同学在研究数学问题时遇到一个定义:对于按固定顺序排列的k个数:x1,x2,x3,……,xk,称为数列Ak:x1,x2,x3,……,xk,其中k为整数且k≥3.定义:V(Ak)=|x1﹣x2|+|x2﹣x3|+……+|xk﹣1﹣xk|.例如数列A5:1,2,3,4,5,则V(A5)=|1﹣2|+|2﹣3|+|3﹣4|+|4﹣5|=4.材料2:有理数a,b在数轴上对应的两点A,B之间的距离是|a﹣b|;反之,|a﹣b|表示有理数a,b在数轴上对应点A,B之间的距离,我们称之为绝对值的几何意义.君君同学在解方程|x﹣1|+|x+2|=5时,利用绝对值的几何意义分析得到,该方程的左式表示在数轴上x对应点到1和-2对应点的距离之和,而当-2≤x≤1时,取到它的最小值3,即为1和-2对应点之间的距离.由方程右式的值为5可知,满足方程的x对应点在1的右边或一2的左边,若x的对应点在1的右边,利用数轴分析可以得到x=2;同理,若x的对应点在-2的左边,可得x=﹣3;故原方程的解是x=2或x=﹣3.根据以上材料,回答下列问题:(1)已知数列A4:x1,x2,x3,x4,其中x1,x2,x3,x4为4个整数,且x1=3,x4=5,V(A4)=4,请直接写出一种可能的数列A4.(2)已知数列A4:3,a,3,a+1,若V(A4)=3,则a的值为.(3)已知数列A5:x1,x2,x3,x4,x5,5个数均为非负整数,且x1+x2+x3+x4+x5=a(a≥1),求V(A5)的最小值.【答案】(1),(答案不唯一)(2)(3)0【解析】【分析】(1)根据材料1列出算式,再根据绝对值的意义可求解,答案不唯一.(2)根据材料1列出算式,再分类讨论,再根据绝对值的意义可求解.(3)因为x1,x2,x3,x4,x5,5个数均为非负整数,所以>||,>||,>||,>||,>0,然后列出不等式可求解.(1)解:V(A4)=||+||+||=4,∴||+||+||=4,当,,V(A4)=||+||+||=4(2)解:||+||+||=3,即||+||+||=3①2≤a<3时,||+||+||=3,所以,解得以a=1,但不符合题意,舍去.②a≤2时,||+||+||=3所以,解得以,符合题意.③a>3时,||+||+||=3所以,,解得以,符合题意.综上所述,或.(3)解:∵x1,x2,x3,x4,x5,5个数均为非负整数∴>||,>||,>||,>||,>0,∴0≤||+||+||+||≤∴0≤V(A5)≤a∴V(A5)的最小值为0.【点睛】本题是一道综合题,正确理解题意、熟练掌握去绝对值的方法是解决本题的关键.类型二和乘方有关4.概念学习现规定:求若干个相同的有理数(均不等于0)的商的运算叫做除方,比如,等,类比有理数的乘方,我们把写作,读作“2的圈3次方”,写作,读作“的圈4次方”,一般地,把写作,读作“的圈次方”.初步探究(1)直接写出计算结果:________,________;(2)下列关于除方说法中,错误的有________;(在横线上填写序号即可)A.任何非零数的圈2次方都等于1B.任何非零数的圈3次方都等于它的倒数C.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数D.圈次方等于它本身的数是1或深入思考我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,那么有理数的除方运算如何转化为乘方运算呢?(3)归纳:请把有理数的圈次方写成幂的形式为:________;(4)比较:________;填“>”“<”或“=”)(5)计算:.【答案】(1),;(2)D;(3);(4);(5)【解析】【分析】(1)根据规定的运算,直接计算即可;(2)根据圈次方的意义,计算判断得出结论;(3)根据题例的规定,直接写成幂的形式即可;(4)根据圈次方的规定直接进行判断即可;(5)先把圈次方转化成幂的形式,利用有理数的混合运算,计算求值即可.【详解】解:(1),,故答案为:,;(2)A.任何非零数的圈2次方都等于1,结论正确,不符合题意;B.任何非零数的圈3次方都等于它的倒数,结论正确,不符合题意;C.负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数,结论正确,不符合题意;D.圈次方等于它本身的数是1,结论错误,符合题意;故选:D;(3),故答案为:;(4)===,===,∵,∴,故答案为:;(5)原式====.【点睛】本题考查了新定义运算,掌握圈次方的意义是解本题的关键.5.一般地,n个相同的因数.相乘a×a×a……a×a记作an,如2×2×2=23=8,此时,3叫做以2为底的8的“劳格数”记为L2(8),则L2(8)=3,一般地,若an=b(a>0且a≠1),则n叫做以a为底的b的“劳格数”,记为La(b)=n,如34=81,则4叫做以3为底的81的“劳格数”,记为L3(81)=4.(1)下列各“劳格数”的值:L2(4)=______,L2(16)=______,L2(64)=______.(2)观察(1)中的数据易4×16=64此时L2(4),L2(16),L2(64)满足关系式________.(3)由(2)的结果,你能归纳出一般性的结果吗?La(M)+La(N)=______.(a>0且a≠1,M>0,N>0).(4)据上述结论解决下列问:已知,La(3)=0.5,求La(9)的值和La(81)的值.(a>0且a≠1)【答案】(1);(2)L2(4)+L2(16)=L2(64);(3);(4)【解析】【分析】(1)根据定义写出各“劳格数”的值;(2)由(1)的结论直接得出结果;(3)根据定义归纳出一般性的结果;(4)根据(3)的结论进行计算即可.【详解】(1)L2(4)=2,L2(16)=4,L2(64)=6故答案为:(2)L2(4)+L2(16)=L2(64)故答案为:L2(4)+L2(16)=L2(64)(3)设则即La(M)+La(N)=La(MN)故答案为:(4)La(3)=0.5【点睛】本题考查了有理数乘方的概念,新定义概念,理解题意是解题的关键.6.读一读:式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和.由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里“”是求和符号.例如:“1+3+5+7+9+…+99”(即从1开始的100以内连续奇数的和)可表示为;又如“13+23+33+43+53+63+73+83+93+103”可表示为.同学们,通过对以上材料的阅读,请解答下列问题:(1)“2+4+6+8+10+…+100”(即从2开始的100以内的连续偶数的和)用求和符号可表示为.(2)计算:的值【答案】;50.【解析】【详解】试题分析:首先根据题意得出新定义的含义,然后根据含义得出一般性的规律,最后根据规律进行计算.试题解析:(1)(2)==0+3+8+15+24=50考点:新定义型类型三和四则运算有关7.探究规律,完成相关题目老师说:“我定义了一种新的运算,叫※(加乘)运算.”老师写出了一些按照※(加乘)运算法则进行运算的式子:(+2)※(+4)=+6;(-3)※(-4)=+7
(-2)※(+3)=-5;(+5)※(-6)=-11
0※(+9)=+9;(-7)※0=+7小明看完算式后说:我知道老师定义的※(加乘)运算法则了,聪明的你看出来了吗?请你帮忙归纳※(加乘)运算法则:(1)归纳※(加乘)运算法则:两数进行※(加乘)运算时,
特别是0和任何数进行※(加乘)运算,或是任何数和0进行※(加乘)运算(2)计算:-5※〔0※(-3)〕=(3)若(4-2b)※(│a│-1)=0,求a+b的值【答案】(1)同号得正,异号得负,并把绝对值相加;都等于这个数的绝对值;(2)8;(3)1或3.【解析】【分析】(1)根据题目中的例子可以总结出❈(加乘)运算的运算法则;(2)①根据(1)中的结论可以解答本题;②根据(1)中的结论和分类讨论的方法可以解答本题.【详解】解:(1)由题意可得,归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正,异号得负,并把它们的绝对值相加;特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都等于这个数的绝对值;故答案为:同号得正,异号得负,并把绝对值相加;都等于这个数的绝对值;(2)(5)❈[0❈(3)]=(5)❈3=(5+3)=8,故答案为:8.(3)∵(4-2b)❈(|a|-1)=0,∴当|a|≠1时,|4-2b|+||a|-1|=0,得b=2,|a|=1(舍去),当|a|=1时,|4-2b|=0,得b=2,∴当|a|=1,b=2时,a=±1,∴当a=1,b=2时,a+b=3,当a=-1,b=2时,a+b=1;【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.8.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”.即:如果,那么与就叫做“差商等数对”,记为(,).例如:;;;则称数对(4,2),(,),(,)是“差商等数对”.根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是(填序号);①(,),②(,)③(-3,-6)(2)如果(,4)是“差商等数对”,请求出的值;(3)如果(,)是“差商等数对”,那么______________(用含的代数式表示).【答案】(1)①;(2);(3).【解析】【分析】(1)根据“差商等数对”的定义进行计算即可得;(2)先根据“差商等数对”的定义可得一个关于x的一元一次方程,再解方程即可得;(3)先根据“差商等数对”的定义列出运算式子,再计算代数式的运算即可得.【详解】(1)①,,,是“差商等数对”;②,,,不是“差商等数对”;③,,,不是“差商等数对”;故答案为:①;(2)由题意得:,解得;(3)由题意得:,解得,故答案为:.【点睛】本题考查了有理数的除法与减法的应用、一元一次方程的应用、列代数式,掌握理解“差商等数对”的定义是解题关键.9.定义:若是不为1的有理数,我们把称为的差倒数.如:2的差倒数是,的差倒数是.已知,是的差倒数,是的差倒数,则______;是的差倒数,…,依次类推,回答下列问题:(1)______,______,______.(2)求的值.【答案】(1),,;(2)【解析】【分析】(1)直接利用倒差数的定义求出a2、a3、a4即可;(2)先根据(1)发现a1、a2、a3…a4为、、4的循环,然后运用加法结合律计算即可.【详解】解:(1),,故答案为,,;(2)由题意和(1)可知,a1、a2、a3…a4为、、4的循环∴=(++4)+(++4)+…+(++4)=673×(++4)=673×=.【点睛】本题主要考查了数字变化规律以及有理数的四则混合运算,理解差倒数的定义以及发现每三个数一循环成为解答本题关键.10.把几个数用大括号围起来,中间用逗号断开,如:{1,2,﹣3}、{﹣2,7,,19},我们称之为集合,其中的数称其为集合的元素,一个给定集合中的元素是互不相同的.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 班主任心理健康与压力管理的培训总结
- 公交扫恶除霸承诺书范本
- 2025-2030全球船用防火窗行业调研及趋势分析报告
- 2025年全球及中国运动刺激疗法行业头部企业市场占有率及排名调研报告
- 2025年全球及中国矩形桥式起重机行业头部企业市场占有率及排名调研报告
- 2025-2030全球便携式鼻腔冲洗器行业调研及趋势分析报告
- 2025-2030全球农用氧化亚铜行业调研及趋势分析报告
- 2025年全球及中国钢制螺旋锥齿轮行业头部企业市场占有率及排名调研报告
- 2025年全球及中国户外电气箱行业头部企业市场占有率及排名调研报告
- 2025-2030全球轴承精密滚珠行业调研及趋势分析报告
- 蛋糕店服务员劳动合同
- 土地买卖合同参考模板
- 2025高考数学二轮复习-专题一-微专题10-同构函数问题-专项训练【含答案】
- 2025年天津市政建设集团招聘笔试参考题库含答案解析
- 2024-2030年中国烘焙食品行业运营效益及营销前景预测报告
- 2025年上半年水利部长江水利委员会事业单位招聘68人(湖北武汉)重点基础提升(共500题)附带答案详解
- 宁德时代笔试题库
- 五年级下册北京版英语单词
- 康复医院患者隐私保护管理制度
- 新课标I、Ⅱ卷 (2024-2020) 近五年高考英语真题满分作文
- 浙江省嘉兴市2023-2024学年六年级(上)期末数学试卷
评论
0/150
提交评论