内蒙古包头市铁路第一中学2023-2024学年高三上学期第一次月考数学(理)试题_第1页
内蒙古包头市铁路第一中学2023-2024学年高三上学期第一次月考数学(理)试题_第2页
内蒙古包头市铁路第一中学2023-2024学年高三上学期第一次月考数学(理)试题_第3页
内蒙古包头市铁路第一中学2023-2024学年高三上学期第一次月考数学(理)试题_第4页
内蒙古包头市铁路第一中学2023-2024学年高三上学期第一次月考数学(理)试题_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

包铁一中20232024学年第一学期月考试题高三理科数学本试卷共22题,共150分,共4页(不含答题卡).考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号填涂在答题卡上.2.作答时,务必将答案写在答题卡上各题目的规定区域内,写在本试卷及草稿纸上无效.3.考试结束后,答题卡交回,试卷自行留存.4.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀.一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x||x|<3,x∈Z},B={x||x|>1,x∈Z},则A∩B=()A. B.{–3,–2,2,3)C.{–2,0,2} D.{–2,2}【答案】D【解析】【分析】解绝对值不等式化简集合的表示,再根据集合交集的定义进行求解即可.【详解】因为,或,所以.故选:D.【点睛】本题考查绝对值不等式的解法,考查集合交集的定义,属于基础题.2.下列函数中,在区间(0,+)上单调递增的是A. B.y= C. D.【答案】A【解析】【分析】由题意结合函数的解析式考查函数的单调性即可.【详解】函数,在区间上单调递减,函数在区间上单调递增,故选A.【点睛】本题考查简单的指数函数、对数函数、幂函数的单调性,注重对重要知识、基础知识的考查,蕴含数形结合思想,属于容易题.3.已知命题﹔命题﹐,则下列命题中为真命题的是()A. B. C. D.【答案】A【解析】【分析】由正弦函数的有界性确定命题的真假性,由指数函数的知识确定命题的真假性,由此确定正确选项.【详解】由于,所以命题为真命题;由于在上为增函数,,所以,所以命题为真命题;所以为真命题,、、为假命题.故选:A.4.tan255°=A.-2- B.-2+ C.2- D.2+【答案】D【解析】【分析】本题首先应用诱导公式,将问题转化成锐角三角函数的计算,进一步应用两角和的正切公式计算求解.题目较易,注重了基础知识、基本计算能力的考查.【详解】详解:=【点睛】三角函数的诱导公式、两角和与差的三角函数、特殊角的三角函数值、运算求解能力.5.已知函数,在下列区间中,包含零点的区间是A. B. C. D.【答案】C【解析】【详解】因为,,所以由根的存在性定理可知:选C.考点:本小题主要考查函数的零点知识,正确理解零点定义及根的存在性定理是解答好本类题目的关键.6.的内角的对边分别为,,,若的面积为,则A B. C. D.【答案】C【解析】【详解】分析:利用面积公式和余弦定理进行计算可得.详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理.7.设,则a,b,c的大小关系为()A. B. C. D.【答案】D【解析】【分析】根据指数函数和对数函数的性质求出的范围即可求解.【详解】,,,,,,.故选:D.8.函数y=的图象可能是A. B.C. D.【答案】D【解析】【详解】分析:先研究函数的奇偶性,再研究函数在上的符号,即可判断选择.详解:令,因为,所以为奇函数,排除选项A,B;因为时,,所以排除选项C,选D.点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.9.下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D.【答案】B【解析】【详解】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可.详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点.故选项B正确点睛:本题主要考查函数的对称性和函数的图像,属于中档题.10.函数的部分图象如图所示,则的单调递减区间为()A., B.,C, D.,【答案】D【解析】【分析】根据图象可得的最小正周期和最小值点,根据余弦型函数的性质分析判断.【详解】设的最小正周期为,可知,即,且当时,取到最小值,由周期性可知:与最近最大值点为,如图所示,所以的单调递减区间为,.故选:D.11.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型:,其中K为最大确诊病例数.当I(K时,标志着已初步遏制疫情,则约为()(ln19≈3)A.60 B.63 C.66 D.69【答案】C【解析】【分析】将代入函数结合求得即可得解.【详解】,所以,则,所以,,解得.故选:C.【点睛】本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.12.已知,函数在上单调递减,则的取值范围是()A. B. C. D.【答案】A【解析】【详解】由题意可得,,,,.故A正确.考点:三角函数单调性.二、填空题:本题共4小题,每小题5分,共20分.13.已知函数是偶函数,则______.【答案】1【解析】【分析】利用偶函数的定义可求参数的值.【详解】因为,故,因为为偶函数,故,时,整理得到,故,故答案为:114.曲线在点处的切线方程为___________.【答案】.【解析】【分析】本题根据导数的几何意义,通过求导数,确定得到切线的斜率,利用直线方程的点斜式求得切线方程【详解】详解:所以,所以,曲线在点处的切线方程为,即.【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要“慢”,计算要准,是解答此类问题的基本要求.15.记的内角A,B,C的对边分别为a,b,c,面积为,,,则________.【答案】【解析】【分析】由三角形面积公式可得,再结合余弦定理即可得解.【详解】由题意,,所以,所以,解得(负值舍去).故答案为:.16.若,则______.【答案】【解析】【分析】以为整体,根据诱导公式运算求解.【详解】由题意可得:.故答案为:.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合,.(1)求,;(2)求及.【答案】(1),或;(2)或,【解析】【分析】(1)化简集合A,B,根据交集和补集的定义求,;(2)根据交并补的定义求、.【详解】解:(1),,,或(2),所以或因为或,所以.18.(1)若将函数图像向下移后,图像经过,求实数a,m的值.(2)若且,求解不等式.【答案】(1)(2)答案见解析.【解析】【分析】(1)由题知,再根据题意得,解方程即可得答案;(2)根据题意,结合对数函数的单调性将不等式转化为的解集,再分类讨论求解即可.【小问1详解】解:函数的定义域满足,即,所以,要使函数的定义域非空,则,即.若将函数图像向下移后得到的解析式为:,.所以在函数的图像上,即,解得:,所以,【小问2详解】解:由题知,,,因为函数在上单调递增,所以等价于,展开整理得:,所以,不等式的解集为的解,所以,当时,不等式的解为;当时,不等式的解为.综上,当时,不等式的解为;当时,不等式的解为.19.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)求函数在区间上的最大值和最小值.【答案】(Ⅰ);(Ⅱ)最大值1;最小值【解析】【详解】试题分析:(Ⅰ)根据导数的几何意义,先求斜率,再代入切线方程公式中即可;(Ⅱ)设,求,根据确定函数的单调性,根据单调性求函数的最大值为,从而可以知道恒成立,所以函数是单调递减函数,再根据单调性求最值.试题解析:(Ⅰ)因为,所以.又因为,所以曲线在点处的切线方程为.(Ⅱ)设,则.当时,,所以在区间上单调递减.所以对任意有,即.所以函数在区间上单调递减.因此在区间上的最大值为,最小值为.【名师点睛】这道导数题并不难,比一般意义上的压轴题要简单很多,第二问比较有特点的是需要两次求导数,因为通过不能直接判断函数的单调性,所以需要再求一次导数,设,再求,一般这时就可求得函数的零点,或是()恒成立,这样就能知道函数的单调性,再根据单调性求其最值,从而判断的单调性,最后求得结果.20.已知函数(1)求函数的最小正周期,最大值及取到最大值的的取值集合;(2)已知锐角满足,求的值.【答案】20.最小正周期为;当时,最大值为3.21.【解析】【分析】(1)根据题意,由三角恒等变换化简,即可得到,结合余弦型函数的性质,即可得到结果;(2)根据题意,由条件可得,结合二倍角公式,代入计算,即可得到结果.【小问1详解】,则函数的最小正周期为,令,,解得,,即当时,函数的最大值为3.【小问2详解】由于,即,解得,则,解得,又为锐角,即,则,所以,即,所以.21.在中,内角A,B,C所对的边分别为a,b,c.已知.(1)求角B的大小;(2)设a=2,c=3,求b和的值.【答案】(Ⅰ);(Ⅱ),.【解析】【详解】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得,则B=.(Ⅱ)在△ABC中,由余弦定理可得b=.结合二倍角公式和两角差的正弦公式可得详解:(Ⅰ)在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此,所以,点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.22.已知函数(其中,)的图象与轴的任意两个相邻交点间的距离为,且直线是函数图象的一条对称轴.(1)求的值;(2)求的单调递减区间;(3)若,求的值域.【答案】(1)2(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论