版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第18讲复数教师版【知识必备】1.复数的一般形式:(其中为实部,为虚部)2.复数的化简:3.复数的分类:(1)当为实数时(2)当为虚数时(3)当为纯虚数时(4)当为一般虚数时4.复平面的对应:复数与复平面上的点一一对应备注:实轴即轴,虚轴即轴5.复数相等:6.复数的模:7.共轭复数:8.复数的运算性质:【题型精讲】【题型一复数的运算】1.计算.(1);(2).2.复数的虚部是(
)A. B. C. D.3.(
)A. B.C. D.4.复数z满足:(
)A. B. C. D.5.已知i为虚数单位,复数z的共轭复数为,且,则(
)A. B. C. D.6.若复数(其中i为虚数单位),则(
)A. B.2 C. D.47.已知,则(
)A. B.C. D.8.已知复数,则复数z的模为(
)A. B. C. D.9.复数的共轭复数是(
)A. B.C. D.10.若,则(
)A. B. C. D.11.设复数z满足,则的虚部为(
)A. B. C. D.212.已知复数z满足,则(
)A. B. C. D.13.若,则等于(
)A.2 B.6 C. D.14.已知复数z满足,则(
)A. B.0 C.4 D.515.已知复数,则z在复平面内所对应的点位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限16.已知复数,则(
)A. B. C. D.17.若(为实数,为虚数单位),则________.18.已知复数、满足,且.求的值.【题型二复数的分类】19.已知复数,其中.(1)若为实数,求的值;(2)若为纯虚数,求的值.20.若复数是纯虚数,则(
)A. B. C. D.21.已知复数,其中,若是实数,则(
)A.0 B.1 C. D.22.已知,若复数为纯虚数,则复数在复平面内对应的点所在的象限为(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限23.设为实数,若存在实数,使得为实数(为虚数单位),则的取值范围是(
)A. B. C. D.24.已知复数为纯虚数,则实数的值为(
)A. B.0 C.1 D.0或125.已知,且为实数,则实数(
)A. B. C.1 D.226.已知复数是纯虚数,是实数,则(
)A.- B. C.-2 D.227.若复数为纯虚数,则实数(
)A. B. C.2 D.328.若为纯虚数,则复数的虚部为__________.【题型三复数的几何意义】29.已知,则对应的点在(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限30.复数在复平面内对应的点的坐标为(
)A. B. C. D.31.在复平面内,复数对应的点为,设是虚数单位,则(
)A. B.C. D.32.已知复平面内点对应的复数为z,则复数的虚部是(
)A. B. C. D.33.若,则在复平面内,复数所对应的点位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限34.若复数z满足,则z的共轭复数在复平面内对应的点位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限35.已知复数,i是虚数单位),是实数.(1)求b的值;(2)若复数在复平面内对应的点在第二象限,求实数m的取值范围.36.已知复数z满足,则z的共轭复数在复平面内对应的点位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限37.已知i是虚数单位,复数在复平面内所对应的点位于(
)A.第一象限 B.第二象限C.第三象限 D.第四象限38.如图,在复平面内,复数对应的点为,则复数的虚部为(
)A. B. C. D.39.已知复数z满足,则z在复平面内对应的点位于(
)A.第一象限 B.第二象限 C.第三象限 D.第四象限40.在复平面内,O为坐标原点,向量所对应的复数为,向量所对应的复数为,点C所对应的复数为,则的值为_________.【题型四复数对应方程问题】41.已知复数是方程的一个根,求和的值.42.若关于x的实系数方程有一个复数根是,则另一个复数根是(
)A. B. C. D.无法确定43.定义:若,则称复数是复数的平方根.根据定义,复数的平方根为(
)A., B.,C., D.,44.方程的解为______.45.若实系数一元二次方程的一个根是,则这个方程可以是______.46.设复数满足,使得关于的方程有实根,求所有满足条件的复数的和.【多选练习】47.若复数,,则下列说法正确的是(
).A.B.在复平面内,复数所对应的点位于第四象限C.的实部为13D.的虚部为48.已知复数,则下列选项正确的是(
)A.z的虚部为1B.C.为纯虚数D.在复平面内对应的点位于第一象限49.已知复数,则下列结论中正确的是(
)A.z对应的点位于第二象限 B.的虚部为2C. D.50.设复数,(i为虚数单位),则下列结论正确的为(
)A.是纯虚数 B.对应的点位于第二象限C. D.51.已知复数满足,则下列结论正确的是(
)A.若,则 B.C.若,则 D.52.已知复数z满足,则下列说法中正确的是(
)A.复数z的模为 B.复数z在复平面内所对应的点在第四象限C.复数z的共轭复数为 D.53.欧拉公式(为虚数单位,)是由瑞土著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数之间的关系,它被誉为“数学中的天桥”,根据此公式可知,下面结论中正确的是(
)A. B.C. D.在复平面内对应的点位于第二象限54.已知复数,,则下列结论中一定正确的是(
)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈阳理工大学《面向对象程序设计》2022-2023学年期末试卷
- 沈阳理工大学《机械工程控制基础》2022-2023学年期末试卷
- 沈阳理工大学《粉体材料科学基础》2022-2023学年第一学期期末试卷
- 关于空气维保合同的情况说明
- 国企购车合同范本
- 合同 能源管理方式
- 合同法937条原文内容
- 2024不锈钢制作合同范本产品制作合同范本
- 2024小区简易房屋装修合同范本
- 2024家庭装修合同补充协议书范本
- 2024年《考评员》应知应会考试题库(附答案)
- 2024新版同股不同权协议书完整版
- ISO14001:2015环境安全监测与测量控制程序
- Abominable《雪人奇缘》电影完整中英文对照剧本
- 商会专职秘书长聘用合同
- 工程建设监理收费标准(发改价格【2007】670号)
- 交付管理体系
- 特殊感染手术处理流程
- (正式版)HGT 3655-2024 紫外光(UV)固化木器涂料
- 大学生就业指导-求职材料准备与面试技巧课件
- 化学品管理的安全防护与个体防护
评论
0/150
提交评论