版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省屏边县市级名校2024届中考数学五模试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y=–4x+440,要获得最大利润,该商品的售价应定为A.60元B.70元C.80元D.90元2.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是()A.84 B.336 C.510 D.13263.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是()A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-24.关于反比例函数y=,下列说法中错误的是()A.它的图象是双曲线B.它的图象在第一、三象限C.y的值随x的值增大而减小D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上5.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.80°6.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)7.下列事件中,必然事件是()A.抛掷一枚硬币,正面朝上B.打开电视,正在播放广告C.体育课上,小刚跑完1000米所用时间为1分钟D.袋中只有4个球,且都是红球,任意摸出一球是红球8.如图,在中,点D为AC边上一点,则CD的长为()A.1 B. C.2 D.9.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数10.如果解关于x的分式方程时出现增根,那么m的值为A.-2 B.2 C.4 D.-4二、填空题(共7小题,每小题3分,满分21分)11.计算:6﹣=_____12.化简:①=_____;②=_____;③=_____.13.若一次函数y=﹣2(x+1)+4的值是正数,则x的取值范围是_______.14.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,则旅客可携带的免费行李的最大质量为kg15.如图,矩形AOCB的两边OC、OA分别位于x轴、y轴上,点B的坐标为B(),D是AB边上的一点.将△ADO沿直线OD翻折,使A点恰好落在对角线OB上的点E处,若点E在一反比例函数的图像上,那么k的值是_______16.圆锥体的底面周长为6π,侧面积为12π,则该圆锥体的高为.17.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲辆.三、解答题(共7小题,满分69分)18.(10分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.19.(5分)在数学活动课上,老师提出了一个问题:把一副三角尺如图摆放,直角三角尺的两条直角边分别垂直或平行,60°角的顶点在另一个三角尺的斜边上移动,在这个运动过程中,有哪些变量,能研究它们之间的关系吗?小林选择了其中一对变量,根据学习函数的经验,对它们之间的关系进行了探究.下面是小林的探究过程,请补充完整:(1)画出几何图形,明确条件和探究对象;如图2,在Rt△ABC中,∠C=90°,AC=BC=6cm,D是线段AB上一动点,射线DE⊥BC于点E,∠EDF=60°,射线DF与射线AC交于点F.设B,E两点间的距离为xcm,E,F两点间的距离为ycm.(2)通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0123456y/cm6.95.34.03.34.56(说明:补全表格时相关数据保留一位小数)(3)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(4)结合画出的函数图象,解决问题:当△DEF为等边三角形时,BE的长度约为cm.20.(8分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.(1)求证;∠BDC=∠A.(2)若∠C=45°,⊙O的半径为1,直接写出AC的长.21.(10分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.22.(10分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?23.(12分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD的值.24.(14分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.(1)如图1,求证:KE=GE;(2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;(3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.
参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】设销售该商品每月所获总利润为w,则w=(x–50)(–4x+440)=–4x2+640x–22000=–4(x–80)2+3600,∴当x=80时,w取得最大值,最大值为3600,即售价为80元/件时,销售该商品所获利润最大,故选C.2、C【解题分析】由题意满七进一,可得该图示为七进制数,化为十进制数为:1×73+3×72+2×7+6=510,故选:C.点睛:本题考查记数的方法,注意运用七进制转化为十进制,考查运算能力,属于基础题.3、B【解题分析】
先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.【题目详解】解:设直线AB的解析式为y=mx+n.∵A(−2,0),B(0,1),∴-2m+n=0n=4解得m=2n=4∴直线AB的解析式为y=2x+1.将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,所以直线l的表达式是y=2x−2.故选:B.【题目点拨】本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.4、C【解题分析】
根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.【题目详解】A.反比例函数的图像是双曲线,正确;B.k=2>0,图象位于一、三象限,正确;C.在每一象限内,y的值随x的增大而减小,错误;D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.故选C.【题目点拨】本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.5、C【解题分析】
解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°.故选C.【题目点拨】本题考查直角三角形的判定,掌握方位角的定义及勾股定理逆定理是本题的解题关键.6、B【解题分析】
作出图形,结合图形进行分析可得.【题目详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.7、D【解题分析】试题解析:A.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;B.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;C.是可能发生也可能不发生的事件,属于不确定事件,不符合题意;D.袋中只有4个球,且都是红球,任意摸出一球是红球,是必然事件,符合题意.故选D.点睛:事件分为确定事件和不确定事件.必然事件和不可能事件叫做确定事件.8、C【解题分析】
根据∠DBC=∠A,∠C=∠C,判定△BCD∽△ACB,根据相似三角形对应边的比相等得到代入求值即可.【题目详解】∵∠DBC=∠A,∠C=∠C,∴△BCD∽△ACB,∴∴∴CD=2.故选:C.【题目点拨】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.9、C【解题分析】
利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【题目详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【题目点拨】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.10、D【解题分析】
,去分母,方程两边同时乘以(x﹣1),得:m+1x=x﹣1,由分母可知,分式方程的增根可能是1.当x=1时,m+4=1﹣1,m=﹣4,故选D.二、填空题(共7小题,每小题3分,满分21分)11、3【解题分析】
按照二次根式的运算法则进行运算即可.【题目详解】【题目点拨】本题考查的知识点是二次根式的运算,解题关键是注意化简算式.12、455【解题分析】
根据二次根式的性质即可求出答案.【题目详解】①原式=4;②原式==5;③原式==5,故答案为:①4;②5;③5【题目点拨】本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.13、x<1【解题分析】
根据一次函数的性质得出不等式解答即可.【题目详解】因为一次函数y=﹣2(x+1)+4的值是正数,可得:﹣2(x+1)+4>0,解得:x<1,故答案为x<1.【题目点拨】本题考查了一次函数与一元一次不等式,根据题意正确列出不等式是解题的关键.14、20【解题分析】设函数表达式为y=kx+b把(30,300)、(50、900)代入可得:y=30x-600当y=0时x=20所以免费行李的最大质量为20kg15、-12【解题分析】过E点作EF⊥OC于F,如图所示:
由条件可知:OE=OA=5,,所以EF=3,OF=4,
则E点坐标为(-4,3)
设反比例函数的解析式是y=,则有k=-4×3=-12.故答案是:-12.16、【解题分析】试题分析:用周长除以2π即为圆锥的底面半径;根据圆锥的侧面积=×侧面展开图的弧长×母线长可得圆锥的母线长,利用勾股定理可得圆锥的高.试题解析:∵圆锥的底面周长为6π,∴圆锥的底面半径为6π÷2π="3,"∵圆锥的侧面积=×侧面展开图的弧长×母线长,∴母线长=2×12π÷6π="4,"∴这个圆锥的高是考点:圆锥的计算.17、2.85×2.【解题分析】
根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).【题目详解】解:28500000一共8位,从而28500000=2.85×2.三、解答题(共7小题,满分69分)18、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解题分析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小.把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标.详解:(1)依题意得:,解得:,∴抛物线的解析式为.∵对称轴为,且抛物线经过,∴把、分别代入直线,得,解之得:,∴直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,∴.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,,∴,,,①若点为直角顶点,则,即:解得:,②若点为直角顶点,则,即:解得:,③若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题.19、(1)见解析;(1)3.5;(3)见解析;(4)3.1【解题分析】
根据题意作图测量即可.【题目详解】(1)取点、画图、测量,得到数据为3.5故答案为:3.5(3)由数据得(4)当△DEF为等边三角形是,EF=DE,由∠B=45°,射线DE⊥BC于点E,则BE=EF.即y=x所以,当(1)中图象与直线y=x相交时,交点横坐标即为BE的长,由作图、测量可知x约为3.1.【题目点拨】本题为动点问题的函数图象探究题,解得关键是按照题意画图测量,并将条件转化成函数图象研究.20、(1)详见解析;(2)1+【解题分析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.【题目详解】(1)证明:连结.如图,与相切于点D,是的直径,即(2)解:在中,.【题目点拨】此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.21、(1)作图见解析;(2)作图见解析.【解题分析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):22、(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解题分析】
(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;
(2)把每月的生产量加起来即可,然后与计划相比较.【题目详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【题目点拨】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.23、(1)见解析;(2).【解题分析】
(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;
(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=x,求得BD=x,根据勾股定理得到AD=x,于是得到结论.【题目详解】解:(1)连接OC,
∵OC=OB,
∴∠OCB=∠B,
∵∠B=∠F,
∴∠OCB=∠F,
∵D为BC的中点,
∴OF⊥BC,
∴∠F+∠FCD=90°,
∴∠OCB+∠FCD=90°,
∴∠OCF=90°,
∴CF为⊙O的切线;
(2)过D作DH⊥AB于H,
∵AO=OB,CD=DB,
∴OD=AC,
∵四边形ACFD是平行四边形,
∴DF=AC,
设OD=x,
∴AC=DF=2x,
∵∠OCF=90°,CD⊥OF,
∴CD2=OD•DF=2x2,
∴CD=x,
∴BD=x,
∴AD=x,
∵OD=x,BD=x,
∴OB=x,
∴DH=x,
∴sin∠BAD==.【题目点拨】本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.24、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).【解题分析】试题分析:(1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;(2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;(3)如下图2,作NP⊥AC于P,由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 解密05 时态、语态与语法填空(讲义)-【高频考点解密】高考英语二轮复习讲义+分层训练(浙江专用)
- 莲的诗句古诗优美
- 湖北省枣阳市吴店镇第二中学2024-2025学年部编版八年级上学期期中测试历史试题(无答案)
- 福建省厦门市思明区槟榔中学2024-2025学年八年级上学期第三次英语测试卷(无答案)
- 高一 人教版 英语 第一单元《Unit 1 Teenage Life》课件
- 高一 人教A版 数学 第三章《单调性与最大(小)值(第1课时)》课件
- 2024年公司理论学习中心组学习情况总结
- PDCA医院品质管理-院感办职业暴露管理专项改善案例
- 浙江省湖州市2023-2024学年高三上学期语文期末调研测试试卷
- 2025届四川省绵阳市高三一诊考试英语试题
- 个人养老金制度
- (工程项目管理资料)工程管理人员岗位责任制
- 回族做礼拜的念词集合6篇
- 英语:初升高八种时态复习全解课件
- 国家开放大学《自动控制技术》形考任务1-4+综合练习参考答案
- 吞食天地的游戏忘云877攻略
- 走近湖湘红色人物知到章节答案智慧树2023年湖南工商大学
- 2023年四川农信总部校园招聘笔试参考题库附带答案详解
- 常见中药饮片
- 籍贯对照表完整版
- 酒店经济责任审计整改情况报告
评论
0/150
提交评论