版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
同学你好!答题前请认真阅读以下内容:全卷共8页,三个大题,共25小题,满分150分,考试时间为120分钟;一律在答题卡相应位置作答,在试题卷上作答视为无效;不能使用科学计算器.一.选择题(共10小题,每题3分,共30分)1.(2020•顺德区模拟)若a=﹣3,则|a|的值为()A.﹣3 B.3 C.±3 D.﹣|﹣3|【解析】|a|=|﹣3|=﹣(﹣3)=3故选:B.2.(2020•东城区校级模拟)2019年12月以来,新冠病毒席卷全球.截止2020年3月24日10:56,我国累计确诊81749例,海外累计确诊297601例.用科学记数法表示全球确诊约为()例.A.8.2×104 B.29.8×104 C.2.98×105 D.3.8×105【解析】81749+297601=379350(例),379350≈3.8×105.故选:D.3.(2020•江岸区校级模拟)如图是由小正方体搭成的几何体的俯视图,其上的数字表示该位置上小正方体的个数,则该几何体的主视图为()A. B. C. D.【解析】由俯视图可得主视图有2列组成,左边一列由2个小正方体组成,右边一列由3个小正方体组成.故选:B.4.(2020•和平区校级模拟)在一只不透明的口袋中放入只有颜色不同的白球6个,黑球8个,黄球n个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球个数𝑛=()A.4 B.5 C.6 D.7【解析】∵口袋中装有白球6个,黑球8个,黄球n个,∴球的总个数为6+8+n,∵从中随机摸出一个球,摸到黄球的概率为,∴,解得,n=7.故选:D.5.(2020•岳麓区校级模拟)下列调查中,适合采用全面调查(普查)方式的是()A.了解湖南卫视的收视率 B.了解湘江中草鱼种群数量 C.了解全国快递包裹产生包装垃圾的数量 D.了解某班同学“跳绳”的成绩【解析】A、了解湖南卫视的收视率,适合采用抽样调查;B、了解湘江中草鱼种群数量,适合采用抽样调查;C、了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查;D、了解某班同学“跳绳”的成绩,适合采用全面调查;故选:D.6.(2019秋•碑林区校级期末)如图,直线l分别与直线AB、CD相交于点E、F,EG平分∠BEF交直线CD于点G,若∠1=∠BEF=68°,则∠EGF的度数为()A.34° B.36° C.38° D.68°【解析】∵EG平分∠BEF,∴∠GEB=∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.7.(2020春•江岸区校级月考)已知点A(3,﹣4),将点A沿x轴翻折得到点A1,再将点A1沿y轴翻折得到点A2,则A2的坐标为()A.(3,4) B.(﹣3,4) C.(﹣4,3) D.(4,﹣3)【解析】∵点A(3,﹣4)沿x轴翻折得到点A1,∴点A1(3,4),再将点A1沿y轴翻折得到点A2,∴A2的坐标是(﹣3,4),故选:B.8.(2020•河南模拟)如图,在Rt△ABC中,∠A=90°,∠ABC=2∠C,以顶点B为圆心,适当长为半径画弧,分别交边AB,BC于点E,F;再分别以E,F为圆心,以大于EF为半径作弧,两弧在∠ABC内交于点P;作射线BP,交边AC于点G,若AG=,则△GBC的面积为()A.3 B.6 C.2 D.【解析】作GH⊥BC于H,如图,由作法得BP平分∠ABC,∴GA=GH=,∵∠A=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°,在Rt△ABG,∵∠ABG=∠ABC=30°,∴AB=AG=3,在Rt△ABC中,BC=2AB=6,∴S△BCG=×6×=3.故选:A.9.(2020春•朝阳县校级月考)如图所示,在平面直角坐标系中,点A(3,1),点P在x轴上,若以P、O、A为顶点的三角形是等腰三角形,则满足条件的点P共有()A.2个 B.3个 C.4个 D.5个【解析】如图,以点O、A为圆心,以OA的长度为半径画弧,OA的垂直平分线与x轴的交点有4个.故选:C.10.(2019秋•市中区期末)在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为完美点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个完美点(,),且当0≤x≤m时,函数y=ax2+4x+c﹣(a≠0)的最小值为﹣3,最大值为1,则m的取值范围是()A.﹣1≤m≤0 B.2≤m< C.2≤m≤4 D.<m≤【解析】令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣1,c=﹣,故函数y=ax2+4x+c﹣=﹣x2+4x﹣3,如图,该函数图象顶点为(2,1),与y轴交点为(0,﹣3),由对称性,该函数图象也经过点(4,﹣3).由于函数图象在对称轴x=2左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当0≤x≤m时,函数y=﹣x2+4x﹣3的最小值为﹣3,最大值为1,∴2≤m≤4,故选:C.二.填空题(共5小题,每小题4分,共20分)11.(2020•江油市一模)若+(3m﹣n)2=0,则n﹣m=4.【解析】由题意得:m﹣2=0,3m﹣n=0,∴m=2,n=6,∴n﹣m=6﹣2=4,故答案为:4.12.(2019秋•宿豫区期末)如图,C、D是线段AB的两个黄金分割点,且CD=1,则线段AB的长为.【解析】∵线段AB=x,点C是AB黄金分割点,∴较小线段AD=BC=,则CD=AB﹣AD﹣BC=x﹣2×=1,解得:x=2+.故答案为:2+13.(2020春•兴庆区校级月考)圆内接四边形ABCD中,对角∠A与∠C的度数的比为4:5,则∠C=100°.【解析】设∠A为4x,则∠C为5x,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,即4x+5x=180°,解得,x=20°,∴∠C=5x=100°,故答案为:100°.14.(2020春•泰兴市校级月考)已知分式方程=+2的解为非负数,求k的取值范围k≤3且k≠1.【解析】由程=+2得x﹣1=k+2(x﹣2),解得:x=3﹣k,∵解为非负数,∴3﹣k≥0,∴k≤3,∵x≠2,∴3﹣k≠2,∴k≠1,∴k≤3且k≠1;故答案为:k≤3且k≠1.15.(2014春•高港区校级月考)已知直线l:y=﹣x+与x轴交于B,与y轴交于A,A1、A2、A3…An都在直线l上,B1、B2、B3…Bn都在x轴上,且△OA1B1,△B1A2B2…,△Bn﹣1AnBn都是等边三角形,则第2014个等边三角形的面积为.【解析】过点A1作A1C⊥OB,A2C′⊥OB,∵y=﹣x+,与x轴交于B,与y轴交于A,则y=0时,x=3,x=0时,y=,∴A(0,),B(3,0),∴tan∠ABO==,∴∠ABO=30°,∴∠OAA1=60°,∴OA1=AOsin60°=,∴CA1=A1Osin60°=×=,∴S△OA1B1=×A1C×OB1=××==,由题意得:∠B1A1A2=30°,B1A2=A1B1=,∴A2C′=sin60°B1A2=×=,∴=××==,…∴第2014个等边三角形的面积为:.故答案为:.三.解答题(共10小题,共100分)16.(2020•河北模拟)若am=an(a>0且a≠1,m、n是正整数),则m=n.利用上面结论解决下面的问题:(1)如果2÷8x•16x=25,求x的值;(2)如果2x+2+2x+1=24,求x的值;(3)若x=5m﹣3,y=4﹣25m,用含x的代数式表示y.【解析】(1)2÷8x•16x=2÷(23)x•(24)x=2÷23x•24x=21﹣3x+4x=25,∴1﹣3x+4x=5,解得x=4;(2)∵2x+2+2x+1=24,∴2x(22+2)=24,∴2x=4,∴x=2;(3)∵x=5m﹣3,∴5m=x+3,∵y=4﹣25m=4﹣(52)m=4﹣(5m)2=4﹣(x+3)2,∴y=﹣x2﹣6x﹣5.17.(2020•江西模拟)【数据收集】以下是从某校九年级男生中随机选出的10名男生,分别测量了他们的身高(单位:cm),数据整理如下:163171173159161174164166169164【数据分析】确定这十个数据的众数、中位数、平均数,并填入表.众数中位数平均数164165166.4【得出结论】(1)若用样本中的统计量估计该校九年级男生平均身高,则这个统计量是平均数;(选填“众数”或“中位数”或“平均数”中一个)(2)若该校九年级共有男生280名,选用合适的统计量估计,该校九年级男生身高超过平均身高的人数.【解析】∵在这组数据中164cm出现的次数最多,∴众数是164cm;把这些数从小到大排列为159,161,163,164,164,166,169,171,173,174,则中位数是=165(cm);平均数是:(163+171+173+159+161+174+164+166+169+164)÷10=166.4(cm);填表如下:众数中位数平均数164165166.4故答案为:164,165,166.4;(1)用样本中的统计量估计该校九年级男生平均身高,则这个统计量是平均数;故答案为:平均数;(2)根据题意,超过166.4cm的人数有4人,则280名男生中,身高超过平均身高的人数约280×=112(人).答:该校九年级男生身高超过平均身高的人数约112人.18.(2020•福安市校级模拟)4月2日福安东百商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定:顾客每购买100元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得100元、50元、20元的购物券.(1)若顾客让转盘自由转动两次.那么能得到70元购物券的概率是;(2)商场规定:凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券10元.转转盘和直接获得购物券,商场更愿意顾客选择哪种方式?【解析】(1)画树状图如图所示,P(获得70元)=;故答案为:;(2)转转盘:100×+50×+20×=14(元);∵14元>10元,∴商场更愿意顾客选择直接获得购物券.19.(2018•南宁)如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF.(1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.【解析】(1)证明:∵四边形ABCD是平行四边形,∴∠B=∠D,∵AE⊥BC,AF⊥CD,∴∠AEB=∠AFD=90°,∵BE=DF,∴△AEB≌△AFD∴AB=AD,∴四边形ABCD是菱形.(2)连接BD交AC于O.∵四边形ABCD是菱形,AC=6,∴AC⊥BD,AO=OC=AC=×6=3,∵AB=5,AO=3,∴BO===4,∴BD=2BO=8,∴S平行四边形ABCD=×AC×BD=24.20.(2019秋•望花区校级月考)一块长30cm,宽12cm的矩形铁皮,(1)如图1,在铁皮的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作成一个底面积为144cm2的无盖方盒,如果设切去的正方形的边长为xcm,则可列方程为(30﹣2x)(12﹣2x)=144.(2)由于实际需要,计划制作一个有盖的长方体盒子,为了合理使用材料,某学生设计了如图2的裁剪方案,空白部分为裁剪下来的边角料,其中左侧两个空白部分为正方形,问能否折出底面积为104cm2的有盖盒子(盒盖与盒底的大小形状完全相同)?如果能,请求出盒子的体积;如果不能,请说明理由.【解析】(1)设切去的正方形的边长为xcm,则折成的方盒的底面为长(30﹣2x)cm,宽为(12﹣2x)cm的矩形,依题意,得:(30﹣2x)(12﹣2x)=144.故答案为:(30﹣2x)(12﹣2x)=144.(2)设切去的正方形的边长为ycm,则折成的长方体盒子的底面为长(﹣y)cm,宽为(12﹣2y)cm的矩形,依题意,得:(﹣y)(12﹣2y)=104,整理,得:y2﹣21y+38=0,解得:y1=2,y2=19(不合题意,舍去),∴盒子的体积=104×2=208(cm3).答:能折出底面积为104cm2的有盖盒子,盒子的体积为208m3.21.(2020•金华模拟)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A、B、C在同一条直线上,在箱体底端装有圆形的滚筒⊙A,⊙A与水平地面切于点D,在拉杆伸长至最大的情况下,当点B距离水平地面38cm时,点C到水平面的距离CE为59cm.设AF∥MN.(1)求⊙A的半径长;(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为80cm,∠CAF=64°.求此时拉杆BC的伸长距离(精确到1cm,参考数据:sin64°≈0.90,cos64°≈0.39,tan64°≈2.1)【解析】(1)作BH⊥AF于点K,交MN于点H.则BK∥CG,△ABK∽△ACG.设圆形滚轮的半径AD的长是xcm.则=,即=,解得:x=8.则圆形滚轮的半径AD的长是8cm;(2)在Rt△ACG中,CG=80﹣8=72(cm).则sin∠CAF=,∴AC=80,(cm)∴BC=AC﹣AB=80﹣50=30(cm).22.(2020•南岗区校级一模)如图,反比例函数y=经过点D,且点D的坐标为(﹣,2).(1)求反比例函数的解析式;(2)如图,直线AB交x轴于点B,交y轴于点A,交反比例函数图象于另一点C,若3OA=4OB,求△BOC的面积.【解析】(1)∵反比例函数y=经过点D(﹣,2).∴k=﹣=﹣1,∴反比例函数的解析式为y=﹣;(2)设直线AB的解析式为y=ax+b,∴A(0,b),B(﹣,0),∴OA=b,OB=,∵3OA=4OB,∴3b=,∴a=,∴y=x+b,∵直线AB经过D(﹣,2),∴2=×(﹣)+b,∴b=,∴y=x+,B(﹣2,0),解得或,∴C(﹣,),∴S△BOC=2×=.23.(2019春•西湖区校级月考)如图,CD是⊙O的直径,AB是⊙O的弦,AB⊥CD,垂足为G,OG:CG=3:2,AB=16.(1)求⊙O的半径;(2)点E为圆上一点,∠ECD=30°,将沿弦CE翻折,交CB于点F,求图中阴影部分的面积.【解析】(1)连接AO,如右图所示,∵CD为⊙O的直径,AB⊥CD,AB=16,∴AG==8,∵OG:CG=3:2,∴OG:OC=3:5,AB⊥CD,垂足为G,∴设⊙O的半径为5k,则OG=3k,∴(3k)2+82=(5k)2,解得,k=2或k=﹣2(舍去),∴5k=10,即⊙O的半径是10;(2)如图所示,将阴影部分沿CE翻折,点F的对应点为M,∵∠ECD=30°,由对称性可知,∠DCM=60°,S阴影=S弓形CBM,连接OM,则∠MOD=120°,∴∠MOC=60°,过点M作MN⊥CD于点N,∴MN=MO•sin60°=10×=5,∴S阴影=S扇形OMC﹣S△OMC=﹣×10×5=﹣25.24.(2016•舟山)我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC为等邻角四边形时,求出它的面积.【解析】(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴PA=PD,PC=PB,∴∠PAD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠PAD,∠APC=2∠PBC,即∠PAD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 煤炭供应链金融
- 燃气工程安全
- 技术人员个人工作计划5篇
- 专业实习报告
- 申请书格式范文模板(7篇)
- 环保主题演讲稿模板集合五篇
- 八年级政治教学计划三篇
- 财务类实习报告范文集锦七篇
- 高一演讲稿范文集锦4篇
- 给高考女儿的一封信15篇
- 第五单元简易方程 提升练习题(单元测试)-2024-2025学年五年级上册数学人教版
- 重点语法清单2024-2025学年人教版英语八年级上册
- NGS与感染性疾病医学课件
- 2024版《大学生职业生涯规划与就业指导》 课程教案
- 人民日报出版社有限责任公司招聘笔试题库2024
- 2024年煤矿事故汇编
- Unit 7单元教案 2024-2025学年人教版(2024)七年级英语上册
- Unit 6 My sweet home(教学设计)-2024-2025学年外研版(三起)(2024)小学英语三年级上册
- 北师大版教案正比例函数案例分析
- 行政文秘笔试题
- 人教版(2024)七年级地理上册跨学科主题学习《探索外来食料作物传播史》精美课件
评论
0/150
提交评论