发电厂燃煤锅炉燃烧PLC控制系统设计_第1页
发电厂燃煤锅炉燃烧PLC控制系统设计_第2页
发电厂燃煤锅炉燃烧PLC控制系统设计_第3页
发电厂燃煤锅炉燃烧PLC控制系统设计_第4页
发电厂燃煤锅炉燃烧PLC控制系统设计_第5页
已阅读5页,还剩50页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

发电厂燃煤锅炉燃烧控制系统设计摘要在热电厂中,以单位机组为控制对象有:锅炉汽包水位控制、燃烧过程控制以及过热蒸汽温度,过热蒸汽温度控制又包括过热蒸汽温度控制与再热蒸汽温度控制。其中,热电厂锅炉的燃烧控制对整个发电过程的安全性及经济性起着重要的作用,所以对它高效率的控制是现在热电厂的一个重要任务。本文以一台工业控制机作为上位机,以西门子S7-300可编程控制机为下位机,系统通过变频器控制电机的启动,运行与调速。上位机监控采用WinCC设计,主要完成系统操作界面设计,实现系统启停控制,参数设定,报警联动,历史数据查询等功能。下位机控制程序采用西门子公司的STEP7编程软件设计,主要完成模拟量信号的处理,温度与压力信号的PID控制等功能,并接受上位机的控制指令以完成风机启停控制,参数设定,循环泵的控制与其余电动机的控制。关键词:热电厂;锅炉燃烧;单片机;控制Coal-firedpowerboilersburningsinglechipcontrolsystemdesignAbstractThermalpowerplantboilercombustioncontrolplaysanimportantroleinsecurityandeconomyoftheentirepowergenerationprocess,thecontrolofitshighefficiencythermalpowerplantisanimportanttask.Inthispaper,theanalysisandstudyoftheentirecombustionsystem,theboilercombustioncontrolsystem,mainsteampressurecontrolsystemandthefurnacepressureandcontrolsystemcontrolprogram,thenitscontrollawandparameterselectionandtuning.Instrumentselection,usingadvanceddigitalinstrument,andusingtheCygnalmicrocontrollerdesignanintelligentcombustioncontrolsystem,giventhehardwareandsoftwareflowchart.ThecontrollertothenewC8051F020MCUasthecore,theuseoffuzzyPIDalgorithmforcomputingandcontrol,notonlycanbeanalog,digitalsignalsamplingandprocessing,butalsotocompletethestatedetectionandcontrol,alarmandfaulthandlingfunctions.Thecontrolsystemhasafast,highprecision,highreliabilityandasimplehardwarestructure.Finally,youcanreachtheboilersafe,economicalandefficientoperation.Keywords:heatandpowerplant;boilercombustion;microcontroller;control目录摘要 1Abstract 1目录 1第一章绪论 21.1研究目的与研究意义 21.2国内外研究现状 3第二章热电厂的生产工艺及单元机组的自动控制系统 52.1热电厂的生产工艺 52.2热电厂单元机组的自动控制系统 62.2.1汽包水位控制 62.2.2炉膛负压控制 82.2.3蒸汽压力控制 92.2.4经济燃烧控制 10第3章硬件设计 113.1用户系统框图 113.2锅炉系统控制的对象 123.3燃烧过程控制 183.4锅炉控制系统设计 183.5控制系统构成 20第4章软件设计 234.1S7-300系列PLC简介 244.2PLC编程语言简介 264.2.1PLC编程语言的国际标准 264.2.2复合数据类型及参数类型 274.2.3系统存储器 284.2.4S7-300CPU中的寄存器 294.3STEP7的原理 304.3.1STEP7概述 304.3.2硬件组态及参数设置 314.3.3符号表 344.3.4逻辑块 354.3程序设计 374.4通信系统 39第五章结束语 41参考文献: 42第一章绪论1.1研究目的与研究意义热力电厂的一系列系统与生产流程与生产工艺,这些大致可以分为水处理系统、锅炉燃烧系统、汽轮机发电系统、供配电系统、这样大的四个系统,其中锅炉是发电过程中必不可少的重要动力设备,它所产生的高压蒸汽既可以驱动透瓶,又可以作为精馏、干燥、反应、加热等过程的热源。随着工业生产规模的不断增大,作为动力与热源的锅炉,也向着大容量、高参数、高效率的方向发展。锅炉的控制主要分为两大部分:燃烧控制系统与汽包水位控制系统。汽包水位一般采用三冲量控制,能达到较好的控制效果,而锅炉的燃烧过程,是一个多参数、多回路、非线性、大滞后、强祸合的控制系统,较难控制。因此,自二十世纪九十年代以来,随着超大型可编程控制器的出现与模糊控制,国外就将自适应控制等智能控制算法技术应用于锅炉的控制。使锅炉控制水平大大提高,实现了锅炉优化控制。国内研究锅炉自动控制虽然现在也比较成熟,但主要是仪表显示、报表打印等功能,控制水平有限,可靠性不够高。与国外锅炉自动控制比较仍存在一定的差距。1.大多数现有的锅炉控制系统可控制的主要还是开关量设备,如风机、炉排与水泵的开关或者阀门控制。不能对它们精确连续调节,使控制手段单一,控制精度低。2.锅炉控制系统的的控制方案不够合理,锅炉控制器一旦出现故障,只能采取系统断电处理,进行人工操作。若锅炉系统中的传感器、变送器等设备出现故障时,温度、压力等参数就无法达到设定值。因此,本文根据热电厂锅炉控制流程,以C8051F020单片机为核心设计了一种火电厂锅炉燃烧煤空比的控制系统。目的是提高电厂燃煤锅炉的控制水平。节约能源,降低环境污染。系统采用模糊PID算法进行运算与控制,不但可以实现对模拟、数字信号进行采样与处理,而且还可以完成状态检测与控制、报警以及故障处理等功能。该控制系统具有速度快、精度高、可靠性高与硬件结构简单的特点。最后可达到锅炉安全、经济、高效的运行。1.2国内外研究现状锅炉的自动化控制从上世纪三、四十年代就开始了,当时大都为单参数仪表控制,进入上世纪五十年代后,美国、前苏联等国家都开始进行对锅炉的操作与控制的进一步研究。但由于当时科技发展的局限性,对锅炉的控制主要停留在使用汽动仪表(包括汽动单元组合仪表与汽动基地式仪表)的阶段,而且大多数锅炉只是检测工艺参数,不进行自动控制。到上世纪六十年代,在发达国家,锅炉的控制主要以电动单元组合仪表(相当于我国的DDZ-II,DDZ-III仪表)检测及控制,还是以检测报警为主,控制为辅助功能。到了上世纪七十年代,随着计算机技术与自动控制技术理论的发展,使得锅炉的计算机控制成为可能。尤其是近一、二十年来,随着先进控制理论与计算机技术的飞速发展,加之计算机各种性能的不断增强,价格的大幅度下降,使锅炉应用计算机控制很快得到了普及与应用。许多发达国家都相继开发出了锅炉计算机控制系统。如今在国外,锅炉的控制己基本实现了计算机自动控制,在控制方法上都采用了现代控制理论中的最优控制、多变量频域、模糊控制等方法,因此,锅炉的热效率很高、锅炉运行平稳,而且减少了对环境的污染。在国内,由于经济技术条件的限制,中小企业锅炉设备水平一直比较落后,大多数中小型锅炉水平基本上停留在手动与简单仪表操作的水平。80年代中后期,随着先进的控制技术引入我国的锅炉控制,锅炉的计算机控制得到了很大的发展。至90年代,锅炉的自动化控制己成为一个热门领域,利用单片机、可编程序控制器、工业计算机以及引进的国外控制设备开发的各种控制系统,己逐渐用于对原有锅炉的技术改造中,并向及新建炉体配套的方向发展,许多新的控制方法,诸如最优控制、自适应控制、模糊控制、神经网络控制、专家控制等自动控制的最新成果也在锅炉自动控制中得到了尝试与应用.但由于控制技术单一,或控制算法的建模往往不能反映真实的锅炉燃烧状况,导致在工程实践中并不怎么成功,不能产生很好的经济效益,挫伤了用户在工业锅炉上用计算机进行控制的积极性。进入本世纪以来,为了进一步改善锅炉操作状况,降低能耗,确保安全运行,减少对大气的污染,同时随着人工智能理论的发展成熟,智能控制技术的大规模应用,对新一代锅炉计算机优化控制系统的开发与应用已势在必行且条件成熟。国内供热锅炉燃烧系统自动控制大多在燃油与燃气锅炉上实现的,对于燃煤锅炉,在自动控制研究方面总是得不到满意的效果,存在的主要问题是滞后问题。近几年变频技术在我国的应用领域越来越广,在锅炉控制方面也有应用,主要有三种形式,①全自动变频定压;②锅炉鼓、引风机变频控制;③循环泵变频控制,对系统进行质调节。三种形式均有独立应用的范例,也有组合应用,但主要是以人工控制为主,节能效果仍然取决于司炉人员的经验,水平与责任意识。近年来,建立在计算机基础之上的自动化监控系统进入了实际应用,它的主要任务是采集与管理各个生产环节的实时生产数据,对生产过程进行监视与控制,并保存历史数据与故障事件,提供报表输出与计算、分析SCADA系统作为生产过程与事物管理自动化最为有效的计算机软硬件系统之一,它有两层含义:一是分布式的数据采集系统,即智能数据采集系统,也就是通常所说的下位机;另一个是数据处理与显示系统,即上位机HMI(HumanMachineInterface,人机界面)系统,下位机通常是指硬件层上的,即各种数据采集设备,如RTU(RemoteTerminalUnit,远程终端测控单元)、PLC(ProgrammableLogicController,可编程逻辑控制器)及各种智能控制设备等等。这些智能采集设备及生产过程与事务管理的设备或仪表相结合,实时感知设备中各种参数的状态,并将这些状态信号转换成数字信号,通过特定的数字通信网络传递到HMI系统中;必要的时候,这些智能系统也可以向设备发送控制信号。上位机HMI系统在接受这些信息后,以适当的形式(如声音、图形、图像等方式)显示给用户,以达到监视的目的,同时数据经过处理后,告知用户设备各种参数的状态(报警、正常或报警恢复)。这些处理后的数据可能会保存到数据库中,也可能通过网络系统传输到不同的监控平台上,还可能及别的系统(如MIS、GIS)结合形成功能更加强大的系统,HMI还可以接受操作人员的指令,将相应的控制信号发送到下位机中,以达到控制的目的。一个完善的SCADA系统的建立,依托于高精度、智能化的一次仪表获取信息,准确无误的通讯手段传输数据与高效快捷的计算机处理能力。SCADA系统所涉及到的技术比较广泛,有仪表技术、检测技术、通讯技术、网络技术等。SCADA系统一般由企业生产调度指挥中心、分厂测控站、管网测压点等组成。它所具有的功能一般包括:数据采集控制功能,数据传输功能,数据显示及分析功能,报警功能,历史数据的存储、检索、查询功能,报表显示及打印功能,遥控功能,网络功能等。第二章热电厂的生产工艺及单元机组的自动控制系统2.1热电厂的生产工艺热力发电厂是利用煤燃烧的化学能产出电能的工厂,即为燃料的化学能→蒸汽的热势能→机械能→电能。在锅炉中,燃料的化学能转变为蒸汽的热能,在汽轮机中,蒸汽的热能转变为轮子旋转的机械能,在发电机中机械能转变为电能。炉、机、电是火电厂中的主要设备,亦称三大主机。辅助三大主机的设备称为辅助设备简称辅机。主机及辅机及其相连的管道、线路等称为系统,如图2.1。热力发电厂的原料就是原煤。原煤用车运送到发电厂的储煤场,再用输煤皮带输送到煤斗。再从煤斗落下由给煤机送入磨煤机磨成煤粉,并同时输送热空气来干燥与输送煤粉。最后送入锅炉的炉膛中燃烧。燃料燃烧所需要的热空气由送风机送入锅炉的空气预热器中加热,预热后的热空气,经过风道一部分送入磨煤机作干燥以及送煤粉,另一部分直接引至燃烧器进入炉膛。图2.1锅炉燃烧流程图燃烧生成的高温烟气,在引风机的作用下先沿着锅炉的倒“U”形烟道依次流过炉膛,水冷壁管,过热器,省煤器,空气预热器,同时逐步将烟气的热能传给过热器,省煤器,空气预热器以及空气,自身变成低温烟气,经除尘器与脱硫装置的净化后在排入大气。煤燃烧后生成的灰渣,其中大的灰子会因自重从气流中分离出来,沉降到炉膛底部的冷灰斗中形成固态渣,最后由排渣装置排入灰渣沟,再由灰渣泵送到灰渣场。大量的细小的灰粒(飞灰)则随烟气带走,经除尘器分离后也送到灰渣沟。炉给水先进入省煤器预热到接近饱与温度,后经蒸发器受热面加热为饱与蒸汽,再经过热器被加热为过热蒸汽,此蒸汽又称为主蒸汽。经过以上流程,就完了燃料的输送与燃烧、蒸汽的生成燃物(灰、渣、烟气)的处理及排出。由锅炉过热器出来的主蒸汽经过主蒸汽管道进入汽轮机膨胀做功,冲转汽轮机,从而带动发电机发电。从汽轮机排出的乏汽排入凝汽器,在此被凝结冷却成水,此凝结水称为主凝结水。主凝结水通过凝结水泵送入低压加热器,有汽轮机抽出部分蒸汽后再进入除氧器,在其中通过继续加热除去溶于水中的各种气体(主要是氧气)。经化学车间处理后的补给水成为锅炉的给水,再经过给水泵升压后送往高压加热器,然后送入锅炉。循环水泵将冷却水(又称循环水)送往凝结器,这就形成循环冷却水系统。以上流程,完成了蒸汽的热能转换为机械能,电能,以及锅炉给水供应的过程。2.2热电厂单元机组的自动控制系统在热电厂中,以单位机组为控制对象,可以讨论的控制系统有,锅炉汽包水位控制系统、燃烧过程控制系统以及过热蒸汽温度控制系统,过热蒸汽温度控制又包括过热蒸汽温度控制与再热蒸汽温度控制。锅炉控制系统可以分为汽包水位控制系统与燃烧控制系统。燃烧控制系统包括:蒸汽压力控制系统、炉膛负压控制系统与经济燃烧控制系统。2.2.1汽包水位控制汽包水位是锅炉安全运行的主要参数之一。水位过高会导致蒸汽带水进入过热器并在过热器管内结垢,影响传热效率,严重的将引起过热器爆管;水位过低又将破坏部分水冷壁的水循环,引起水冷壁局部过热而爆管。尤其是大型锅炉,例如,30万KW机组的锅炉蒸发量为1024t/h,而汽包的容积较小,一旦控制不当,则会在十几秒内使汽包内的水全部汽化,造成严重的事故。故锅炉汽包给水控制系统的任务就是保证汽包水位在容许的范围内,并兼顾锅炉的平稳运行。常用的水位控制系统有以下三种:单冲量给水控制系统,即以水位为唯一调节信号的单参数、单回路控制系统;双冲量给水控制系统,以蒸汽流量作为补充信号的双参数控制系统;三冲量给水控制系统,以蒸汽流量与给水流量作为补充信号的三参数控制系统。单冲量水位控制系统只根据水位变化去改变给水调节阀的开度。对中小型锅炉,由于汽包相对对于负荷而言容量较大,水位受到扰动的反应速度较慢,虚假水位现象不是很严重。因此一般采用单冲量控制方法就可满足生产要求。双冲量控制系统引入蒸汽量作为补充信号,是为了克服虚假水位对控制的不良影响。当蒸汽负荷变化引起水位大幅度波动时,蒸汽流量信号起着超前的作用,可使水位还没出现变化时提前时调节阀动作,减小水位波动,从而改善控制品质。但是,当给水压力波动引起给水流量发生变化时,双冲量控制方法只有当水位发生变化后才能进行控制,因此就不能迅速克服给水压力变化对水位的影响。所以针对本文中的实际锅炉对象,给水控制系统采用三冲量控制方式。一般三冲量给水系统分为单级三冲量给水调节系统与与串级给水控制系统。蒸汽过热系统包括一级过热器、减温器、二级过热器。控制任务是是过热器出口温度维持在允许的范围内,并且保护过热器使管壁的温度不超过允许的工作温度。过热蒸汽温度过高或过低,对锅炉运行与蒸汽用户设备都是不利的。过热蒸汽温度过高过热器容易受损,汽轮机也因内部过度的热膨胀而严重影响安全运行;过热温度过低,一方面使设备的效率降低,同时是汽轮机后几级的设备湿度增加,引起叶片的损坏。所以必须把过热器出口蒸汽的温度控制在规定的范围内。过热蒸汽温度控制系统常采用减温水流量作为操纵变量,但由于控制通道的时间常数及滞后都较大,组成单回路控制系统往往不能满足要求,因此常采用图2.3所示的串级控制系统,以减温水的出口温度为副参数,可以提高对过热蒸汽温度的控制质量。过热蒸汽的温度控制有是还采用双冲量控制系统,如图2.4所示,这种方案实质上串级控制系统的变形,把减温器出口温度经过微分器作为一个冲量,其作用及串级的副参数相似。图2.3串级控制系统图2.4双冲量控制系统2.2.2炉膛负压控制锅炉在正常运行中,炉膛负压应保持在规定的范围内。负压过大,漏风严重,总的风量增加,烟气热量损失增大,同时引风机的电耗增加,不利于经济燃烧;负压偏正,炉膛要向外喷火,不利于安全生产,有害于环境卫生。所以炉膛负压必须进行自动调节,将其稳定在规定的范围内。有文献采用PID控制系统,如图2.5所示。图2.5炉膛负压控制系统图2.2.3蒸汽压力控制蒸汽压力是衡量蒸汽供求关系是否平衡的重要指标,是蒸汽的重要参数。蒸汽压力过或过高,对于金属导管与负荷设备都是不利的。压力太高,会加速金属的蠕变,压力太低,就不能提供给设备符合质量要求的蒸汽。在锅炉运行过程中,蒸汽压力降低,说明负荷设备的蒸汽消耗量大于锅炉的蒸发量;蒸汽压力升高,表明负荷设备的蒸汽消耗量小于锅炉的蒸发量。因此,控制蒸汽压力,是安全生产的需要,是维持负荷设备正常工作的需要,也是保证燃烧经济性的需要。锅炉蒸汽压力的变化是由于热平衡失调引起的.而影响热平衡的因素主要是燃烧热与蒸汽热,燃烧热的波动引起的热平衡失调称为“内扰”,而蒸汽热波动引起的热平衡失调为了克服内外扰对蒸汽压力的影响,在各个基本的单炉蒸汽压力控制系统中,输入到锅炉的燃烧热必须跟随蒸汽热的变化而变化.以尽量保持热量平衡同时根据蒸汽压力及给定值的偏差适当增减燃料量以增加或减少蒸汽压力。锅炉压力控制系统原理如图2.6所示。采用带前馈的串级PID控制模式。主环压力控制根据蒸汽压力及设定值的偏差来调节燃料量以保证压力的稳定。副环燃料控制器根据主环输出及前馈信号(即外扰)的合成指令去控制进入锅炉的燃料量,克服燃料量波动,从而使压力保持在稳定范围之内。图2.6锅炉压力控制系统原理图2.2.4经济燃烧控制要使锅炉燃烧过程出现最佳工况,提高锅炉的效率与经济性,必须使空气与燃料维持适当的比例。否则,势必增加热量损失,降低经济技术指标,并造成对周围环境的污染。1.传统的采用氧量计的燃烧控制系统锅炉设备是一个复杂的被控对象,目前在国内动力行业广泛应用的燃煤锅炉中,普遍存在热效率低、浪费严重的问题。虽然存在多种原因,但空气及煤粉的比例(风煤比)是否合适,则是影响燃烧效率的关键因素。目前燃烧控制大多采用传统PID控制,其优点是特性直观,控制迅速,但其缺点亦很明显:将风煤比简单地看成负荷(汽压)的单一函数并近似为比值关系。然而在不同的负荷下。合适的过剩空气率有很大变化,因此单纯的比值控制特性并不能保证锅炉在任何工况下达到最佳的燃烧状态;同时.对于不同的煤种及煤粉特性、炉排转速、煤层厚度不均匀等原因引起的燃料方面的扰动,其最佳过剩空气率亦有较大变化,使得单纯的PID控制很难实现经济燃烧。燃料燃烧必须在足够的氧气环境下才能充分进行,故烟气中应含有一定的过剩空气。目前,国内广泛采用的是固定风煤比加变氧量校正方案.该方案首先通过风煤比曲线粗调给风量,然后用烟气中含氧量加以校正.由于不同负荷下的过剩空气系数有所不同,所以采用变氧量校正方案可有效地解决这个问题,但这种方案同时也存在着一些问题.(1)为了得到图2.7的曲线,需要司炉工经过相当长时间的观察。在不同负荷下,根据燃烧状况最佳时的烟气含氧量数据进行一记录得到的,而且曲线的形状不能适应煤种的变化。(2)锅炉生产过程中,烟道漏风增加、煤质变化、锅炉结垢等原因都会对最佳含氧量模型的参数产生影响。(3)目前普遍使用的氧化错氧量计的价格昂贵,使用寿命短,含氧量测量的可靠性不高,很难使燃烧工作在最佳状态。(4)氧量信号的滞后时间较长,当负荷突变时,燃料量突变,而氧量反应不及时,仍保持原来的送风量,造成燃烧不充分。(5)由于燃烧不充分,烟气中会有大量的CO,所以单靠含氧量不能判定是否工作在最佳工作点。图2.7最佳过剩空气系数及负荷的关系图鉴于以上这些采用氧量计的燃烧过程的弊端,在本系统设计中,应采用以单片机为核心的炉膛温度为被控量的燃烧控制系统。第3章硬件设计3.1用户系统框图系统运行的示意图如图3-1所示.图3-1系统运行示意图由图3-1可以看出,由输煤装置送入煤斗的原煤,直接落在缓缓向前移动的炉排进入燃烧室。在燃烧室中燃烧的空气由炉排下的风机供给。燃料燃烧所产生的高温烟气以辐射放热的方式向燃烧室四周的水冷壁传递热量,然后经防渣管进入对流烟道。对流烟道是由烟墙隔成的。对流烟道中布置有对流管束等受热面。对流管束是及上、下锅筒连在一起的一簇管束,管内的水吸收烟道中的热量而升温。一部分在上锅筒中被加热的高温水进入供水管道。烟气在烟道中冲刷对流管束以及下锅筒放出热量后,进入尾部烟道,然后经引风机与烟囱排入大气。排入大气的烟气温度越低,说明烟气的热量被吸收的越充分,燃料的热能被利用的程度越高,锅炉的热效率就越高。锅炉是个较复杂的调节对象,为保证提供合格温度的热水供取暖需要,生产过程各主要工艺参数必须加以严格控制。锅炉控制系统的基本控制任务与控制要求包括:燃烧控制(炉膛温度控制、炉膛负压控制、引风控制、送风控制);给水控制(供水运行参数与水压力、供水温度、供水流量等);以及对各设备状态进行检测,以便进行显示、报警、工况计算以及指标打印等。3.2锅炉系统控制的对象通常在锅炉燃烧系统中,根据生产需要对风速、风量、温度等指标进行控制与调节以适应用户要求与运行工况。而最常使用的控制手段则是调节风门、挡板开度的大小来调节受控对象。这样,不论生产需求的大小,风机都会全速运转,而运行工况的变化则使得能量以及风门、挡板的节流损失消耗掉。在生产过程中,不仅控制精度受到限制,而且还造成能源浪费与设备损耗。从而导致生产成本增加,设备使用寿命缩短,设备维护、维修费用居高不下。在供暖锅炉系统中带有循环泵、补水泵等水泵类设备,根据不同的生产需求往往采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管道、阀门等密封性能的破坏,还加速了泵腔、阀体的磨损与汽浊,严重时损坏设备而影响生产。近年来,出于节能的迫切需求与对供暖质量不断提高的要求,加之采用变频调速器(简称变频器)易操作、免维护、控制精度高,并可以实现高功能化等特点,因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。用变频器来对异步交流电动机调速,是八十年代末迅速发展成熟的一项高新技术。它的优点是:调速的机械特性好,调速范围广,调速特性曲线平滑,可以实现连续、平稳的调速,尤其当它应用于风机、水泵等大容量负载时,可获得显著的节能效果。变频调速应用于锅炉系统的风机与水泵等电机的自动控制中,其节能效果明显。1.风机、水泵运行特性及常用方法的节能分析(由于风机与水泵的运行特性相同,此处以风机为例来讨论它的特性)(1)流量与压力用H=F(Q)表示风机全压(包括静风压与动风压)及风量的关系风机的轴功率P为:KW(3.1)式中Q-风量,m3/h;H-全压,kPa;-风机效率。电动机的输出功率Pm为:KW(3.2)式中一传动机构的传动效率。(2)流量与功率在流体力学中,转速流量功率存在者下列关系:(3.3)由(3.3)式可知,风量及转速成正比,风压及转速的平方成正比,轴功率及转速的立方成正比。如果风量下降20%,可以采用调速的方法使转速下降20%,则风机的轴功率要下降到原值的51.2%;当风机量减少至50%时,风机的轴功率下降至原值的12.5%。当然,风机速度大幅度下降时,风机效率也有所下降,实际需要的轴功率要高于上面的计算值。即便这样,节电量也是相当可观的,因此,风机、水泵采用调速控制流量是非常有意义的。(3)风机、水泵的轴功率对于流量变化较大的风机、水泵,采取调速的方法改变流量,是节电的有效方法。降低风机的转速,可大大降低风机的轴功率,图3-2为风机调速节能原理图。图3-2风机调速节能原理图上图绘出了风机在不同转速下的典型输出特性H(n1)H(n2),图中曲线R1,R2分别表示由管路所决定的特性曲线。当风机转速为n1,,管路阻力为R1时,输送的总流量Q1,由点1决定,此时风机的输出的压力为H1,所需的轴功率:(3.4)若所需流量为Q2,在管路阻力不变的情况下,实际所需的压力为H3,比H1下降,但如果此时的风机转速没有改变,那么风机的输出压力不但不能从H1降到H3,反而要增加到H2,而这个压头差值通常就是通过调节风门来实现,从而增加了管道阻力,使管道特性系数变为R2来实现的,此时的损耗为:(3.5)如果此时不采用调节风门的办法而是将风机的转速调低为n2,使风机的输出特性变为H(n2),那么随着风机的输出风量的减少,在输送同样的风量Q2的情况下,原来消耗在风门上的功率NS就可以完全可以避免了,这样既满足了生产的需要,又达到了节能的目的。从下表的几种选择可以看出,变频调节风量节能最显著,挡板调节风量耗能最严重。表3.1调节风门挡板、变频调速的耗能分析表风量(%)轴功率kw(标牌)出口挡板(kw)入口挡板(kw)变频、串级(kw)电机输入总损失电机输入总损失电机输入总损失10011.070.071.060.061.080.08900.7291.0350.3060.840.1110.790.061800.5120.9950.4830.7250.2130.550.038700.3430.960.6070.680.3370.380.037600.2160.8950.6790.640.4240.250.034500.1250.840.7150.60.4750.150.025300.0270.710.6830.520.4730.050.023流量的调速方法很多,常用的有变极调速、二次电阻控制调速、变频调速(VVVF)等,这些控制方法各具特点。当流量调节在90%以上时,各种调速方法的效率差不多,也可不采用调速装置。若流量调节在60%以下时,变频与变极调速效率较高,其它方法不太适宜。在变频、变极、串级三种高效调速方法中,由于后两种调速方式要改变原有电极的定子绕组极对数与原有基础位置等,不如变频调速方法容易采用,因此变频调速的方法目前应用较广。调速可以节能,但节能的多少,需视调速系统的运行工况、运行时间(调节及不调节流量的时间比)、流量调节范围的大小而定。在运行中,由于流量减少,电动机与调速装置的效率也有所下降,但电能的节约量却在增加。风机、水泵调速节能效果大小,主要以节能率(即节能功率及额定功率之比)来反映。需要注意的是,上述离心机械设备的工作特性,虽然都遵守比例定律,但在工程实际中,风机与水泵却存在明显的不同之处。对于风机,在绝大多数情况下,其运行时的基本特性接近理论值;而对于水泵,由于实际工况的存在,在同样流量变化时,调节水泵转速的节能效果要低于调节风机转速的节能效果。调频变压调速器是一种现代高技术节能装置,即所谓VVVF,常称变频调速器。将其应用到暖通空调制冷行业,能达到明显的节能效果,被称为80年代暖通制冷空调的两大突破之一。变频调速比其它调速方法具有高效性,它能实现无级调速,调速比一般可达20:1,调速起动能耗小、寿命长、可靠性高、维修方便、占地面积小、无噪声、性价比高、一机多控、节能效率高、收回投资快等特点。目前,变频调速技术已逐渐为许多企业所认识与接受,随着这项技术的不断发展与完善,它必将得到更加广泛的应用,也必将为认识与接受它的企业带来可观的经济效益。2.供热系统的计算依据(1)初调节依据根据流体力学与工程热力学基本理论,供暖系统的热量、流量与作用压力的关系为:mH20(3.6)w(3.7)式中:用户系统的作用压头,mH20;V用户的热水流量,m3/h;S用户的阻力特性系数,h2/m5Q用户的供热量,w循环水的密度,kg/m3CP水的比热,J/kg.℃供回水温差,℃。当系统达到热力稳定后,记录下各用户供回水温差与压力差及热源总供回水温差,然后顺序调节,应使热用户调节后的供回水压力差为:mH2O(3.8)式中:调节前热用户记录的供回水压力差,mH2O调节前热用户记录的总供回水温差,℃调节前热源记录的总供回水温差,℃a修正系数。当用户的供回水温差大于热源总供回水温差时,a=1.031.06,偏差大时取较大值,偏差小时取较小值。当用户的供回水温差小于热源总供回水温差时,a=0.95--0.98,偏差大时取较小值,偏差小时取较大值。初调后,待系统达到新的稳定状态,再进行读数记录、计算与调节,这样反复进行,直到满足要求为止。(2)运行调节参数的计算供暖系统对建筑物供热,既要保证在设计条件下(最不利情况)室温符合要求,同时允许在一定的范围内波动。因此不仅要有正确的设计,而且要对系统进行正确的运行调节。但是目前大部分供暖系统的设计热负荷值大于需要值,选用的散热器面积随之增大,造成系统的供回水温度达不到设计值,相应的运行参数值也不符合理论计算值。因此,在确定运行参数时,要考虑散热器的相对面积及系统的相对流量值。如采用质调节运行方式,供回水温度计算公式为:℃(3.9)℃(3.10)式中:室内温度,℃;散热器的设计平均计算温差,℃;用户的设计供水温差,℃;相对热量,;相对况量,散热器相对面积,;B散热器传热系数指数。(3)累计热量计算根据热力学基本原理,在某一时间内,锅炉的总供热量为:(3.11)式中:t累计时间,S;tg,th锅炉总供回水温度,℃。其它符号同前。比热CP与密度是温度的函数,所以只要知道各时刻的流量与供回水温差,即可求出某时间内的热量。3.3燃烧过程控制锅炉燃烧系统是一个多变量输入、多变量输出、大惯性、大滞后且相互影响的一个复杂系统。当锅炉的负荷变化时,所有的被调量都会发生变化,而当改变任意调节量时,也会影响到其他被调量。锅炉燃烧过程自动控制的基本任务是是燃料燃烧所提供热量适应符合的需要,同时还要保证锅炉安全经济运行。燃烧控制系统的任务主要有三点:(1)稳定锅炉的出水温度,始终保持在设定值附近。出水温度的设定值及室外温度以及消耗热量(负荷)的变化相关,以出水温度为信号,改变燃煤量与风煤比,达到出水温度及设定值一致。同时测量系统的回水温度与炉膛温度,若回水温度过低则适当加大给煤量,反之则适当减少给煤量;若炉膛温度过高则适当减少给煤量,反之则适当加大给煤量。(2)保证锅炉燃烧过程的经济性。对于给定出水温度的情况下,需要调节鼓风量与给煤量的比例,时好美两盒鼓风量成比例关系,同时根据出水温度的变化对鼓风量进行前馈控制,然后通过测定烟气含氧量,运用偏差控制调节风煤比,使燃煤充分燃烧。(3)调节鼓风量与引风量,保持炉膛压力在一定的负压范围内。炉膛负压的变化,反映了引风量与鼓风量的不相适应。如果炉膛负压太小,炉膛容易向外喷火,危及设备及工作人员的安全。负压过大,炉膛的漏风量过大,增加引风机的电耗与烟气带走的热量损失。本系统中根据鼓风量的变化,对引风量进行前馈控制。根据经验设定炉膛负压,并测定炉膛负压,运行PID算法控制炉膛负压保持在一定的范围内,从而调节引风量,确定引风机的转速。3.4锅炉控制系统设计锅炉的工况如下:(1)完全手动控制方式,水位控制、给煤量的多少(即炉排转速)、鼓风量的多少(即鼓风机转速)与引风量的多少都是操作工凭借经验进行调节。这样的控制方式造成操作工劳动强度大且增加了系统的不可靠性。(2)控制设备落后,通过挡风板对鼓风量与引风量进行控制,大量的能源浪费在挡风板上,能源浪费严重。同时电机转速不可调,只能通过启停改变输入,难以进行有效控制,而且电机损耗严重。(3)控制效果差,锅炉长期工作在大鼓风大引风状态下,热量损失严重、锅炉热效率低。通过调查,我们可以看出该营区锅炉的整套控制系统是很落后的,这直接带来了控制效果差、锅炉热效率低、能耗大环境污染比较严重等诸多问题。故需要设计新的控制系统以达到降低能耗,改善环境污染,减小操作人员的劳动强度与提高经济效益的目的。根据锅炉供暖系统的工作特点,控制系统的基本控制任务与控制要求包括:燃烧控制(炉膛温度控制、炉膛负压控制、引风控制、送煤控制):给水控制(供水压力、供水温度、供水流量等);以及对各设备状态进行检测,以便进行显示、报警、工况计算以及制表打印等。锅炉是高压运行设备,保证安全性极其重要。在用户供暖需要的情况下,S7-300PLC控制给水阀、输煤量、鼓风量及引风量,使保持锅炉的出水温度稳定,炉膛负压稳定,烟气稳定,使燃料能量最充分地燃烧,以取得最大的热效率。最优燃烧控制则关系到锅炉经济运行。利用S7-300PLC对锅炉系统进行控制的整体结构图如图3-3所示:图3-3锅炉控制系统结构图在锅炉房供暖系统中,主要是对系统的总供回水温度、循环水量、室内外温度、瞬时热量与累计热量等重要参数进行监控。这些参数可以反映供暖系统温度、流量随室外温度变化的规律,它的准确程度直接影响到方案的准确性。图3-4为锅炉房供暖系统监测示意图。图3-4锅炉供暖检测示意图锅炉计算机自动化控制系统,就是利用现代计算机技术来实现工业锅炉生产过程自动化的系统。它的组成应包括两个部分,即控制器部分与锅炉生产设备部分。其中控制器部分为系统的控制核心,它通过智能仪表对锅炉的现场工况〔出回水温度、炉膛温度等)数据进行采样检测,并通过总线将信号传送至可编程序处理器(PLC)上,PLC按照事先编好的程序对数据进行处理与运算,最后输出控制信号控制锅炉生产过程,同时还可实现向上位机传送数据信息,上位机也可通过接入总线实现对生产过程的监视与控制;锅炉生产过程由锅炉本体与炉排电机、鼓风机、引风机及其变频器等辅机组成,辅机的运行就由PLC控制,从而实现对锅炉生产过程的设计。锅炉上位机变频自动控制系统中,上位机及上位机上运行的组态软件实现人机交换功能,操作人员可以通过组态软件监视锅炉的运行过程,同时也可以通过上位机,通过组态软件对锅炉的运行进行干预控制。锅炉生产过程部分是锅炉生产运行场所,它由锅炉本体及其辅机组成。锅炉辅机包括鼓风机、引风机、水泵、上煤机与除渣机等设备。本设计中所用模糊自整定PID控制算法,通过对西门子公司的S7-300PLC处理器编程来实现,采集误差信号与误差变化量信号,将其模糊化到语言变量的论域,采用离线计算的方法将模糊规则制成模糊查询表,通过在线方式查询模糊控制量输出,最后将PID参数校正量及基准量相加,获得PID参数的即时值,最后进行PID运算计算得到控制对象执行器。3.5控制系统构成本设计综合考虑锅炉的控制特性与现场条件,确定采用PLC加上位机监控工作方式同操作台手动操作切换方式,其中PLC加上位机工作方式可用于自动状态,操作台工作方式用于人工调试或紧急情况下使用。两种方式间可自由切换,且处于操作台工作方式时,PLC及上位机仍采集现场信号,但输出不对现场作用。本设计主要设计PLC加上位机的控制方式。在整个系统运行时,上位机完成参数设定与状态监控,PLC负责实时控制程序的运行。系统由4个子系统组成:水位控制子系统、出回水压力控制子系统、最优风煤比控制子系统与负压控制子系统。根据工程实际情况本系统对锅炉进行控制,控制系统所采用主要部件如下:安装有WinCC组态软件及STEP7软件的计算机一台,PLC控制器1套、压力信号传感变送器2个、液位信号传感变送器2个、温度信号传感变送器2个、回水流量传感变送器2个、给水流量传感变送器2个、变频器4台与其它附件。器件类型选择型号备注PLCS7-300可通过扩展电缆进行数字量I/O模块、模拟量模块或智能接口模块的扩展PLCCPUCPU315可连接7个扩展模块,最大扩展至35点模拟量I/OPLC扩展模块SM321SM322SM331SM332压力信号传感变送器PT100供电电压传感器:10VDC(6-12VDC)变送器:24VDC(9~36V)液位信号传感变送器PTP6024-20mA,0-5V,1-5V,0-10V温度信号传感变送器TG100-VNB测量精度高。感器寿命极长。回水流量传感变送器RL-AVS24VDC,工作压力:0—2.5MPA给水流量传感变送器RL-AVS24VDC,工作压力:0—2.5MPA变频器VLT5000丹麦的丹佛斯系列带有WinCC组态软件及STEP7软件的计算机将系统所用各控制设备及检测仪表组态到一起,可实现对现场信息的监视操作,并可将运行程序通过MPI网传输到PLC中,以实现对锅炉系统的控制。PLC:本系统以SIEMENS公司的S7-300系列PLC为主控制器,由现场智能传感变送器对锅炉的炉膛温度、炉膛负压给水压力与回水压力等现场信号进行检测并变送后通过I/O模块送往PLC,其后PLC按照预订程序处理并通过I/O模块返回控制信号。变频器:变频器采用丹麦的丹佛斯系列变频器的VLT5000,工作时变频器根据PLC运算得到的控制信号或操作台转速设定控制信号对给水泵、炉排、鼓风机与引风机进行调速控制。其它附件包括1个操作台,1个配电柜、2个控制柜等。图3-5控制系统框图本系统可以工作于手动方式与自动方式下。系统工作在手动方式下时,司炉工对系统进行控制,司炉工根据操作台上显示仪表显示的现场信号(炉膛温度、给回水压力与炉膛负压),根据需要,分别调节操作台面板上的给水泵、炉排电机、鼓风机与引风机调速旋钮,调速旋钮调节相应变频器的输出大小,而变频器的输出大小直接控制给水泵、炉排转速、鼓风量与引风量,从而实现控制锅炉运行过程。当系统工作在自动方式下时,PLC作为核心控制器,根据查表控制算法对锅炉运行进行控制(调节变频器),从而对锅炉运行进行控制。操作台采用仪表控制系统,必要时进行两种运行方式的相互切换,以便在不同锅炉控制需要间切换。控制系统中,由锅炉变频控制系统通过控制变频器对给水泵、炉排电机、鼓风机与引风机进行节能调速。除了对变频器的调节外,整个锅炉控制系统还包括,锅炉启停控制部分、保护系统及检测系统(包括熄火报警等)及各阀门控制以及积灰处理分系统。这些系统也全都通过手动或自动方式控制、锅炉运行过程的控制调节主要包括事故下的保护,启停过程控制,正常的燃烧过程调节三部分。事故保护:这主要是由于某种原因造成循环水停止或循环量过小,以及锅炉内水温太高,出现汽化。此时最重要的是恢复水的循环,同时制止炉膛内的燃烧。这就需要停止给煤,停止炉排运行,停止鼓风机、引风机。PLC接收水温超高的信号后,就应立即进入事故处理程序,按照上述顺序停止锅炉运行,并响铃报警,通知运行管理人员,必要时还可通过手动补入冷水排除热水,进行锅炉降温。启停控制:锅炉采用煤粉燃烧。点火时在炉排上铺煤,煤上放着引燃的浇了柴油的木柴,炉排速度调整到最低,鼓风机及引风机也调至最低工作状态,直至给水压力达到额定压力再将炉排及鼓风引风机转速调整到正常。启动点火的准备工作为人工手动进行,但炉排转速与鼓风与引风的控制及封火暂停机与再次启动的过程则由PLC控制自动进行。封火过程为逐渐停止炉排运动,停掉鼓风机,然后停止引风机。重新启动的过程则是开启引风机,慢慢开大鼓风机,随炉温升高慢慢加大炉排进行速度。控制系统的控制核心PLC根据现场传感变送器反馈回来的现场信号(炉膛温度、给回水压力与炉膛负压),根据程序算法,输出控制量调节变频器的输出大小,而变频器的输出大小直接控制给水泵、炉排转速、鼓风量与引风量,这就是锅炉系统的PLC自动运行方式。为了保证特殊场合需要,我们在自动方式中加入另外一种工作方式,我们称之为上位机控制方式。所谓的上位机控制方式是由操作人员直接在上位机上设定炉排、鼓风机与引风机的转速,这些控制命令通过PLC的输出模块输出控制变频器的转速。第4章软件设计S7--300/400属于模块式PLC,主要由机架、CPU模块、信号模块、功能模块、接口模块、通信处理器、电源模块与编程设备等组成。图4.1PLC控制系统示意图PLC的主要生产厂家:德国的西门子(Seimens)公司,美国Rockewll公司所属的AB公司,GE—Fanuc公司,法国的施耐德(schneider)公司,日本的三菱与欧姆龙(OMRON)公司。PLC采用循环执行用户程序的方式。OB1是用于循环处理的组织块(主程序),它可以调用别的逻辑块,或被中断程序(组织块)中断。在起动完成后,不断地循环调用OB1,在OB1中可以调用其它逻辑块(FB,SFB,FC或SFC)。循环程序处理过程可以被某些事件中断。在循环程序处理过程中,CPU并不直接访问I/O模块中的输入地址区与输出地址区,而是访问CPU内部的输入/输出过程映像区,批量输入、批量输出。图4.2.扫描过程某一编程元件对应的过程映像位为1状态时,称该编程元件为ON,过程映像位为0状态时,称该编程元件为OFF。循环时间(CycleTime)是指操作系统执行一次循环操作所需的时间,又称为扫描循环时间(ScanCycleTime)或扫描周期。4.1S7-300系列PLC简介S7-300的CPU模块(简称为CPU)都有一个编程用的RS-485接口,有的还带有集成的现场总线PROFIBUS-DP接口或PtP串行通讯接口,S7-300不需要附加任何硬件、软件与编程,就可以建立一个MPI(多点接口)网络,如果有PROFIBUS-DP接口,可以建立一个DP网络网络。图4.3S7-300PLC1.电源模块2.后备电池3.24VDC连接器4.模式开关5.状态与故障指示灯6.存储器卡(CPU313以上)7.MPI多点接口8.前连接器9.前盖功能最强大CPU的RAM为512KB,最大8192个存储器位,512个定时器与512个计数器,数字量最大65536,模拟量通道最大为4096。有350多条指令。计数器的技术范围为1-999,定时器的定时范围为10ms-9990ms。只需要扩展一个机架,可以使用价格便宜的IM365接口模块对。数字量模块从0号机架的4号槽开始,每个槽位分配四个字节的地址,32个IO点。模拟量模块一个通道占一个字地址。从IB256开始,给每一个模拟量模块分配8个字。1.模块诊断功能可以诊断出以下故障:失压,熔断器熔断,看门狗故障,EPROM、RAM故障。模拟量模块共模故障,组态/参数错误、断线、上下溢出。2.过程中断数字量输入上升沿、下降沿中断;模拟量输入超限;CPU暂停当前程序,处理OB40。3.状态及故障显示LEDSF(系统出错/故障显示,红色):CPU硬件故障或软件错误时亮。BATF(电池故障,红色):电池电压低或没有电池时亮;DC5V(+5V电源指示,绿色):5V电源正常时亮;FRCE(强制,黄色):至少有一个IO被强制时亮;RUN(运行方式,绿色):CPU处于RUN状态时亮;重新启动时以2Hz的频率闪亮;HOLD(单步、断点)状态时以0.5Hz的频率闪亮;STOP(停止方式,黄色):CPU处于STOP,HOLD状态或重新启动时常亮;BUSF(总线错误,红色)。4.模式选择开关A.RUN-P(运行-编程)位置:运行时还可以读出与修改用户程序,改变运行方式。B.RUN(运行)位置:CPU执行,读出用户程序,但是不能修改用户程序。C.STOP(停止)位置:不执行用户程序,可以读出与修改用户程序。D.MRES(清除存储器):不能保持。将钥匙开关从STOP状态扳到MRES置可复位存储器,使CPU回到初始状态。复位存储器操作:通电后从STOP位置扳到MRES位置,“STOP”LED熄灭1s,亮1s,再熄灭1s后保持亮。放开开关,使它回到STOP位置,然后又回到MRES,“STOP”LED以2Hz的频率至少闪动3s,表示正在执行复位,最后“STOP”LED一直亮。某些CPU模块上有集成IO模块。PLC使用的物理存储器有:RAM,ROM,快闪存储器(FlashEPROM)与EEPROM。4.2PLC编程语言简介4.2.1PLC编程语言的国际标准IEC6ll31是PLC的国际标准,1992~1995年发布了IEC6ll31标准中的1~4部分,我国在1995年11月发布GB/T15969-1/2/3/4(等同于IEC6ll31-1/2/3/4)。IEC6ll31-3广泛地应用PLC、DCS与工控机、“软件PLC”、数控系统、RTU等产品。它们定义了5种编程语言:1)指令表IL(Instructionlist):西门子称为语句表STL.2)结构文本ST(Structuredtext):西门子称为结构化控制语言(SCL)。3)梯形图LD(Ladderdiagarm):西门子简称为LAD。4)功能块图FBD(runctionblockdiagram):标准中称为功能方框图语言.5)顺序功能图SFC(Sequentialfunctionchart):对应于西门子的S7Graph。图4.6PLC的编程语言在SETP7编程软件中,如果程序块没有错误,并且被正确地划分为网络,在梯形图、功能块图与语句表之间可以转换。如果部分网络不能转换,则用语句表表示。语句表可供喜欢用汇编语言编程的用户使用。语句表的输入快,可以在每条语句后面加上注释。设计高级应用程序时建议使用语句表。梯形图适合于熟悉继电器电路的人员使用。设计复杂的触点电路时最好用梯形图。功能块图适合于熟悉数字电路的人使用。S7SCL编程语言适合于熟悉高级编程语言(例如队SCAL或C语言)的人使用。S7Graph,HiGraph与CFC可供有技术背景,但是没有PLC编程经验的用户使用S7Graph对顺序控制过程的编程非常方便,HIGraPh适合于异步非顺序过程的编程,CFC适合于连续过程控制的编程。通常,用户程序由组织块(OB)、功能块(FB、FC)、数据块(DB)构成。其中OB是系统操作程序及用户应用程序在各种条件下的接口界面,用于控制程序的运行。OB块根据操作系统调用的条件(如时间中断与报警中断等)分成几种类型,这些类型有不同的优先级,高优先级的OB可以中断低优先级的OB。4.2.2复合数据类型及参数类型1.复合数据类型通过组合基本数据类型与复合数据类型可以生成下面的数据类型:(1)数组(ARRAY)将一组同一类型的数据组合在一起,形成一个单元。(2)结构(STRUCT)将一组不同类型的数据组合在一起,形成一个单元.(3)字符串(SRTING)是最多有254个字符(CHAR)的一维数组。(4)日期与时间(DATE一ANDJIME)用于存储年、月、日、时、分、秒、毫秒与星期,占用8个字节,用BCD格式保存。星期天的代码为1,星期一-星期六的代码为2~7。例如DT#2004-07-15-12:30:15.200(5)用户定义的数据类型UDT(user-defineddatatypes).在数据块DB与逻辑块的变量声明表中定义复合数据类型。2.参数类型为在逻辑块之间传递参数的形参(fomralparameter,形式参数)定义的数据类型:(1)TIMER(定时器)与COUNTER(计数器):对应的实参(actaulparameter,实际参数)应为定时器或计数器的编号,例如T3,CZI。(2)BLOCK(块):指定一个块用作输入与输出,实参应为同类型的块。(3)POINTER(指针):指针用地址作为实参.例如P#M50.0。(4)ANY:用于实参的数据类型未知或实参可以使用任意数据类型的情况,占10个字节。4.2.3系统存储器1.过程映像输入/输出(/IQ)在扫描循环开始时,CPU读取数字量输入模块的输入信号的状态,并将它们存入过程映像输入(processimageinput,Pll)中。在扫描循环中,用户程序计算输出值,并将它们存入过程映像输出表(prcoessimageoutput,PIQ).在循环扫描结束时将过程映像输出表的内容写入数字量输出模块。I与Q均以按位、字节、字与双字来存取,例如I0.0,BI0,IWO与ID0。及直接访问I/O模块相比的优缺点。2.内部存储器标志位(M)存储器区3.定时器(T)存储器区时间值可以用二进制或BCD码方式读取。4.计数器(C)存储器区计数值(0一999)可以用二进制或BCD码方式读取。5.共享数据块(DB)及背景数据块(DI)DB为共享数据块,DBXZ.3,DBBS,DBW10与DBD12。Dl为背景数据块,DIX,DIB,DIW与DID。6.外设I/O区(Pl/PO)外设输入(PI)与外设输出(PQ)区允许直接访问本地的与分布式的输入模块与输出模块。可以按字节(plB或pQB)、字(Plw或PQw)或双字(PID或PQD)存取,不能以位为单位存取PI与PO。4.2.4S7-300CPU中的寄存器1.累加器(ACCUx)累加器用于处理字节、字或双字的寄存器。S7-300有两个犯位累加器(ACCUI与ACCUZ),S7-400有4个累加器(ACCUI~ACCU4)。数据放在累加器的低端(右对齐)。2.状态字寄存器(16位)首次检测位():若该位的状态为0,则表明一个梯形逻辑网络的开始,或指令为逻辑串的第一条指令;逻辑运算结果(RLO):该位用来存储执行位逻辑指令或比较指令的结果;状态位(STA);OR位暂存逻辑“及”的操作结果(先及后或):算术运算或比较指令执行时出现错误,溢出位OV被置1;OV位被置1时溢出状态保持位05位也被置1,OV位被清0时05仍保持为1,用于指明前面的指令执行过程中是否产生过错误;条件码1(CC1)与条件码0(CCO)综合起来用于表示在累加器1中产生的算术运算或逻辑运算的结果及0的大小关系、比较指令的执行结果或移位指令的移出位状态;二进制结果位(BR)在一段既有位操作又有字操作的程序中,用于表示字操作结果是否正确。在梯形图的方框指令中,BR位及ENO有对应关系,用于表明方框指令是否被正确执行:如果执行出现了错误,BR位为0,ENO也为0:如果功能被正确执行,BR位为1,ENO也为1。159876543210未用BRCC1CC0OSOVORSATRLOFC图4.7状态字的结构3.数据块寄存器:DB与Dl寄存器分别用来保存打开的共享数据块与背景数据块的编号。4.3STEP7的原理STEP7用于S7,M7,C7,WinAC的编程、监控与参数设置,基于STEP7V5.2版。STEP7具有以下功能:硬件配置与参数设置、通信组态、编程、测试、启动与维护、文件建档、运行与诊断功能等。4.3.1STEP7概述1.STEP7的硬件接口PC/MPI适配器+RS-232C计算机的通信卡CP56ll(PCI卡)、CP55ll或CP5512(PCMCIA卡)将计算机连接到MPI或PROFIBUS网络。计算机的工业以太网通信卡CP1512(PCMCIA卡)或CP1612(PCI卡),通过工业以太网实现计算机及PLC的通信。STEP7的授权在软盘中。STEP7光盘上的程序AtuhorsW用于显示、安装与取出授权。2.STEP7的编程功能(1)编程语言3种基本的编程语言:梯形图(LAD)、功能块图(FBD)与语句表(STL)。57-SCL(结构化控制语言),87-GRAPH(顺序功能图语言),S7HiGraph与CFC。(2)符号表编辑器(3)增强的测试与服务功能设置断点、强制输入与输出、多CPU运行(仅限于57一400),重新布线、显示交叉参考表、状态功能、.直接下载与调试块、.同时监测几个块的状态等。程序中的特殊点可以通过输入符号名或地址快速查找。(4)STEP7的帮助功能按FI键便可以得到及它们有关的在线帮助。菜单命令“Help→conteins”进入帮组窗口。3.STEP7的硬件组态及诊断功能(1)硬件组态①系统组态:选择硬件机架,模块分配给机架中希望的插槽。②CPU的参数设置。③模块的参数设置。可以防止输入错误的数据。(2)通信组态①网络连接的组态与显示;②设置用MPI或者PROFIBUS-DP连接的设备之间的周期性数据传送的参数。③设置MPI、PROFIBUS或者工业以太网实现的时间驱动的数据传输,用通信块编程。(3)系统诊断①快速浏览CPU的数据与用户程序在运行中的故障原因。②用图形方式显示硬件配置、模块故障;显示诊断缓冲区的信息等。4.3.2硬件组态及参数设置1.硬件组态图4.8S7-300的硬件组态窗口2.CPU的参数设置图4.9CPU属性设置对话框表4-4时钟存储器各位对应的时钟脉冲周期及频率位76543210周期(s)21.610.80.50.40.20.1频率(Hz)0.50.62511.2522.55103.数字量输入模块的参数设置在CPU处于STOP模式下进行。设置完后下载到CPU中。当CPU从STOP模式转换为RUN模式时,CPU将参数传送到每个模块。图4.10数字量输入模块的参数设置4.数字量输出模块的参数设置图4.11数字量输出模块的参数设置5.模拟量输入模块的参数设置(1)模块诊断及中断的设置8通道12位模拟量输入模块(订货号为6ES7331-7KF02-0AB0)的参数设置对话框。图4.12模拟量输入模块的参数设置(2)模块测量范围的选择“4DMU”是4线式传感器电流测量;“R-4L”是4线式热电阻;“TC-I”是热电偶;“E”表示测量种类为电压。未使用某一组的通道应选择测量种类中的“Deactivated”(禁止使用)。(3)模块测量精度及转换时间的设置SM331采用积分式A/D转换,积分时间直接影响到A/D转换时间、转换精度与干扰抑制频率。为了抑制工频频率,一般选用20ms的积分时间。表4-56ES7331-7KF02模拟量输入模块的参数关系积分时间2.516.720100基本转换时间(ms,包括积分时间)31722102附加测量电阻转换时间(ms)1111附加开路监控转换时间(ms)10101010附加测量电阻与开路监控转换时间(ms)16161616精度(位,包括符号位)912124干扰抑制频率(Hz)400605010模块的基本响应时间(ms,所有通道使能24136176816(4)设置模拟值的平滑等级在平滑参数的四个等级(无,低,平均,高)中进行选择。(5)模拟量输出模块参数设置CPU进入STOP时的响应:不输出电流电压(0CV)、保持最后的输出值(KLV)与采用替代值(SV)。4.3.3符号表共享符号(全局符号)在符号表中定义,可供程序中所有的块使用。在程序编辑器中用“View“→”Displaywith”→”SymbolicRepresentation”选择显示方式。(1)生成及编辑符号表CPU将自动地为程序中的全局符号加双引号,在局部变量的前面自动加“#“号。生成符号表与块的局域便量表时用户不用为变量添加引号与#号。图4.13符号表数据块中的地址(DBD、DBW、DBB与DBX)不能在符号表中定义。它们的名字应在数据块的声明中定义。用菜单命令“View”→”ColumnsR,O,M,C,CC”可以选择是否显示表中的”R,O,M,C,CC“列,它们分别表示监视属性、在WinCC里是否被控制与监视、信息属性、通信属性与出点控制。可以用菜单命令”View“→”Sort“选择符号表中变量的排序方法。(1)共享符号及局域符号,后者不能用汉字。(2)过滤器(Filter)在符号表中执行菜单命令“View”→”Filter”,”I*”表示显示所有的输入,”I*.*“表示所有的输入位,”I2.*“表示IB中的位等。4.3.4逻辑块逻辑块包括组织块OB、功能块FB与功能FC。1.程序的输入方式:增量输入方式或者源代码方式(或称文本方式、自由编辑方式)。2.生成逻辑块图4.14梯形图编辑器3.网络执行菜单命令“Insert→Network“,或点击工具条中相应的图标,在当前网络的下面生成一个新的网络。菜单命令”View→Display→Comments“用来激活或取消块注释或网络注释。可以用剪贴板在块内部与块之间复制与粘贴网络,可以用Ctrl键。4.打开与编辑块的属性菜单命令““来查看与编辑块属性。5.程序编辑器的设置进入程序编辑器后用菜单命令“Option→Customize“打开对话框可以进行下列设置:在“General“标签页的”Font”设置编辑器使用的字体与字符的大小。(1)在“STL“与”LAD/FDB“标签页中选择这些程序编辑器的显示特性。(2)在“Block“(块)标签页中,可以选择生成功能块时是否同时生成背景数据块、功能块是否有多重背景功能。(3)在“View“选项卡中的”ViewafterOpenBlock“区,选择在块打开时显示的方式。6.显示方式的设置执行View菜单中命令,放大缩小梯形图或功能块图的显示比例。菜单命令“View→Display→SymbolicRepresentation“,切换绝对地址与符号地址方式。菜单命令“View→Display→SymbolicInformation“用来打开或关闭符号信息。4.3程序设计本设计是锅炉控制,以温度控制为主,主要是控制锅炉的出水温度达到控制用户室内温度的目的。我设计的程序是以查表控制为主,以检测到的室外温度作为基准,来改变循环泵频率,引风机频率,鼓风机频率,从而改变供水温度。主程序流程图如下:图4-15主程序流程图锅炉的点火是有严格的程序的,经资料查询,确定了点火时各电机启动的顺序,流程图如下:图4-16点火子程序流程图本程序还要用到采样程序,主要采集室外温度、室内温度、炉膛负压、出水温度、回水温度、供水压力、回水压力等。流程图如下:图4-17采样子程序流程图详细程序见附录。4.4通信系统MPI是多点通信接口(MultiPointInterface)的简称。MPI物理接口符合ProfibusRS485(EN50170)接口标准。MPI网络的通信速率为19.2kbit/s~12Mbit/s,S7-200只能选择19.2kbit/s的通信速率,S7-300通常默认设置为187.5kbit/s,只有能够设置为Profibus接口的MPI网络才支持12Mbit/s的通信速率。用STEP7软件包中的Configuration功能为每个网络节点分配一个MPI地址与最高地址,最好标在节点外壳上;然后对PG、OP、CPU、CP、FM等包括的所有节点进行地址排序,连接时需在MPI网的第一个及最后一个节点接入通信终端匹配电阻。往MPI网添加一个新节点时,应该切断MPI网的电源。为了保证网络通信质量,总线连接器或中继器上都设计了终端匹配电阻。组建通信网络时,在网络拓扑分支的末端节点需要接入浪涌匹配电阻。全局数据(GD)通信方式以MPI分支网为基础而设计的。在S7中,利用全局数据可以建立分布式PLC间的通讯联系,不需要在用户程序中编写任何语句。S7程序中的FB、FC、OB都能用绝对地址或符号地址来访问全局数据。最多可以在一个项目中的15个CPU之间建立全局数据通讯。在MPI分支网上实现全局数据共享的两个或多个CPU中,至少有一个是数据的发送方,有一个或多个是数据的接收方。发送或接收的数据称为全局数据,或称为全局数。具有相同Sender/Receiver(发送者/接受者)的全局数据,可以集合成一个全局数据包(GDPacket)一起发送。每个数据包用数据包号码(GDPacketNumber)来标识,其中的变量用变量号码(VariableNumber)来标识。参及全局数据包交换的CPU构成了全局数据环(GDCircle)。每个全局数据环用数据环号码来标识(GDCircleNumber)。例如,GD2.1.3表示2号全局数据环,1号全局数据包中的3号数据。在PLC操作系统的作用下,发送CPU

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论