大一上学期高数知识点_第1页
大一上学期高数知识点_第2页
大一上学期高数知识点_第3页
大一上学期高数知识点_第4页
大一上学期高数知识点_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

PAGEPAGE80第二章导数与微分一、主要内容小结1.定义·定理·公式(1)导数,左导数,右导数,微分以及导数和微分的几何意义(2)定理与运算法则定理1存在.定理2若在点处可导,则在点x处连续;反之不真.定理3函数在处可微在处可导.导数与微分的运算法则:设均可导,则,,,(3)基本求导公式2.各类函数导数的求法(1)复合函数微分法(2)反函数的微分法(3)由参数方程确定函数的微分法(4)隐函数微分法(5)幂指函数微分法(6)函数表达式为若干因子连乘积、乘方、开方或商形式的微分法.方法:对数求导法(即先对式子的两边取自然对数,然后在等式的两端再对求导).(7)分段函数微分法3.高阶导数(1)定义与基本公式高阶导数公式:莱布尼兹公式:(2)高阶导数的求法①直接法②间接法4.导数的简单应用(1)求曲线的切线、法线(2)求变化率——相关变化率二、例题解析例2.1设,(K为整数).问:(1)当K为何值时,在处不可导;(2)当K为何值时,在处可导,但导函数不连续;(3)当K为何值时,在处导函数连续?解函数在x=0点的导数:===即当时,的导函数为:常见错解:。错误原因没有搞清求导对象.是一阶导数对求导,而是一阶导数对t求导。例2.7求函数的微分。解==例2.8设,求。分析本例是求分式有理函数的高阶导数,先将有理假分式通过多项式除法化为整式与有理真分式之和,再将有理分式写成部分分式之和,最后仿的表达式写出所给定的有理函数的n阶导数。解===()例2.9设求的导函数的连续区间,若间断,判别类型,并分别作与的图形。分析函数是用分段表达的函数.在的两侧:当时,;当时,.因此,在处,的可导情况,需根据定义来作判断,求出导函数后,再判别它的连续区间。解因为,所以在处不可导。故 。因为在处无定义,所以是的间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论