




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.5.2无约束最优化问题的数值解法
4.5.2.1单变量最优化问题的数值解法〔一维搜索〕一、消去法的根本概念1消去法的根本思想利用单峰函数在可行域内只有一个极值点的特点,设法逐步缩小搜索最优点的区间,直至找到最优点,并到达允许的精度为止。消去法分为:1整理ppt同时消去法:同时计算一批点的函数值,然后比较各函数值的大小,再消去一局部区间,直至到达精度要求。序贯消去法:从第二个点起,每计算一个点的函数值,就与前一个点的函数值进行比较,消去局部区间后再安排下一个计算点,如此序贯进行,直至到达精度要求。2整理ppt2序贯法缩小搜索区间设:一元函数y(x)在区间[a0,b0]内为单峰函数,假设首先在[a0,b0]内任取两点x1,x2(x1<x2),并计算函数值y(x1),y(x2),这时可能的三种情况为:3整理ppt〔1〕
y(x1)<y(x2)那么x*在[a0,x2]之内4整理ppt〔2〕
y(x1)>y(x2)那么x*在[x1,b0]之内5整理ppt〔3〕y(x1)=y(x2)那么x*在[x1,x2]之内6整理ppt根据上面分析,可将搜索区间缩小。在余下的区间内继续选择新点,比较新点的函数值,直至区间缩小到精度要求,找到最优点。a0b0091011121334567812X1’x17整理ppt3不定区间当进行n次函数值的计算与比较后,可以得出这n个函数值中的最小值,f(xm)及最小点xm以及其左右的邻点xk、xr,而真正的最小点x*必落在xr与xk之内。将xr与xk之间的区间称为不定区间ln,且ln=xr–xk8整理ppt不定区间的影响因素:①
与计算次数n有关;l0=b0–a0一定时,n↑ln↓②与计算点的分布方式有关,即与xi确实定方法有关显然,ln越小,那么xm与x*越接近,用xm近似x*越可靠,即精度越高。ln=xr–xk9整理ppt4区间缩短率n次函数值的计算与比较后,不定区间与原始区间的比值①当l0一定时,En↓ln↓②相同计算次数下,En越小的方案越好10整理ppt二对无约束函数的搜索——求单峰所在区间的进退算法
消去法的应用根底是目标函数f(x)在[a0,b0]内为单峰函数。问题:〔1〕怎样确定f(x)为单峰函数〔2〕怎样确定f(x)的单峰所在区间[a0,b0]一般采用进退算法解决这两个问题。11整理ppt1、进退算法的根本思想由单峰函数的性质可知,对于存在极小值的单峰函数,在极小点左边,函数值严格下降,而在极小点右边,函数值应严格上升。12整理ppt据此,可以从某个给定的初始点出发,沿着函数值下降的方向逐步前进〔或后退〕直至发现函数值开始上升为止。由两边高中间低的三点函数值,就可以确定极小值所在的初始区间[a0,b0]13整理ppt2、进退算法
(1)选定初始点a0与步长h(2)计算并比较y〔a0〕和y〔a0+h〕,根据比较结果有前进和后退两种可能:①
前进计算:②后退运算:14整理ppt前进计算:假设y〔a0〕≥y〔a0+h〕,那么步长加倍,计算y〔a0+3h〕。
假设y〔a0+h〕≤y〔a0+3h〕,那么令a0=a0,b0=a0+3h15整理ppt假设y〔a0+h〕≥y〔a0+3h〕,令a0=a0+h,h=2h,重复上述前进运算。
16整理ppt后退运算:假设y〔a0〕≤y〔a0+h〕,那么后退计算y〔a0-h〕;假设y〔a0-h〕≥y〔a0〕,那么令a0=a0-h,b0=a0+h,停止运算。否那么继续后退。17整理ppt例:求函数的极小所在区间初始点a0=1,步长h=1解:h=a0=118整理ppt所以应后退19整理ppt应继续后退,后退时步长加倍,所以计算后退,计算20整理ppt找到了函数值大〔〕、小〔
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理管理和医疗卫生法律法规
- 组长培训方案
- 2024-2025学年广东省深圳高级中学北校区等多校七年级上学期期中生物学试卷
- 2024年辽宁省锦州市中考二模历史试卷
- 2025中考数学冲刺抢押秘籍(山东济南版)猜押02整式运算概率函数尺规作图新定义(多结论)(第6~10题)(解析版)
- 2024-2025学年下学期初中语文统编版九年级期末必刷常考题之作文
- 四川农业大学《户外拓展运动》2023-2024学年第一学期期末试卷
- 北京信息职业技术学院《社会组织管理》2023-2024学年第一学期期末试卷
- 中北大学《水利工程运行管理》2023-2024学年第一学期期末试卷
- 苏州幼儿师范高等专科学校《日语中级语法》2023-2024学年第一学期期末试卷
- 国开公共部门人力资源管理期末复习题
- 个人垫付资金协议书
- 核磁共振与DSA融合技术的临床应用-全面剖析
- 2025春季学期国开电大专科《个人与团队管理》一平台在线形考(形考任务3)试题及答案
- JJG 1-1999 国家检定校准 规范
- 2024年中国资源循环集团有限公司招聘笔试真题
- 肿瘤患者全程健康管理
- 能源设备的使用和维护指南
- 美国特殊教育介绍
- 腹股沟疝嵌顿病人的护理
- T-NBSES 007-2024 化工过程安全紧急泄放、旁路设施大气污染管控技术指南
评论
0/150
提交评论