第04讲 探索与表达规律(6类热点题型讲练)(原卷版)_第1页
第04讲 探索与表达规律(6类热点题型讲练)(原卷版)_第2页
第04讲 探索与表达规律(6类热点题型讲练)(原卷版)_第3页
第04讲 探索与表达规律(6类热点题型讲练)(原卷版)_第4页
第04讲 探索与表达规律(6类热点题型讲练)(原卷版)_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第04讲探索与表达规律(6类热点题型讲练)1.探索运用符号表示数字规律和图形规律的方法.2.提高观察图形、探索规律的能力,培养创新意识.知识点01规律探究常见的数字规律规律总结数列形式1,3,5,7,9,···,2,4,6,8,10,···,4,7,10,13,16,···,2,5,8,11,14,···,2,4,8,16,32,···,3,5,9,17,33,···,2,5,10,17,26,···,0,3,8,15,24,···,,,,,,,···,,,,,,,···,1,3,6,10,15,21,···,斐波那契数列1,1,2,3,5,8,13,…,从第三个数开始每个数等于与它相邻的前两个数之和知识点02规律探究方法总结1.规律探究的核心是找出每个数与对应的位次(即n)之间的关系;2.若数列为分数数列,则分子分母分开找规律;3.若数列是正负交替排列,则在答案前加上;若数列是负正交替排列,则在答案前加上;4.若是选择题,则可以用代值法,再利用排除法选出正确答案即可.知识点03高斯求和定理.题型01数字类规律探索之排列问题【典例1】(2023·浙江衢州·校考一模)观察下列数据:,,,,,…,它们是按一定规律排列的,依照此规律,第个数据是()A. B. C. D.【变式1】(2022春·黑龙江哈尔滨·六年级校考期中)一组数据,,,,…请按这种规律写出第十个数是.【变式2】(2022秋·浙江金华·七年级校考期中)从3开始的连续奇数按右图的规律排列,其余位置数字均为.

(1)第行第列的数字是.(2)数字在图中的第行,第列.题型02数字类规律探索之末尾数字问题【典例2】(2022秋·江苏连云港·七年级校考阶段练习)观察下列算式:,,,,,,,…归纳各计算结果中个位数字的规律,可得的个位数字是(

)A.1 B.3 C.9 D.7【变式1】(2023春·江苏南京·七年级校考阶段练习)观察下列算式:①;②;③寻找规律,并判断的值的末位数字为()A.1 B.3 C.5 D.7【变式2】(2023春·江苏泰州·七年级统考期中)发现规律解决问题是常见解题策略之一.已知数,则这个数的个位数为(

)A.3 B.4 C.5 D.6【变式3】(2023春·江苏连云港·七年级统考期末)生物学中,描述、解释和预测种群数量的变化,常常需要建立数学模型.在营养和生存空间没有限制的情况下,某种细胞可通过分裂来繁殖后代,我们就用数学模型来表示,即:,,,,,……,请你推算的个位数字是(

)A.8 B.6 C.4 D.2题型03数字类规律探索之新运算问题【典例3】(2022·湖南株洲·统考二模)定义一种关于整数n的“F”运算:(1)当n是奇数时,结果为;(2)当n是偶数时,结果是(其中k是使是奇数的正整数),并且运算重复进行.例如:取,第一次经F运算是29,第二次经F运算是92,第三次经F运算是23,第四次经F运算是74,……;若,则第2020次运算结果是(

)A.1 B.2 C.7 D.8【变式1】(2022秋·江苏扬州·七年级校考阶段练习)a是不为2的有理数,我们把称为a的“哈利数”.如:3的“哈利数”是,的“哈利数”是,已知,是的“哈利数”,是的“哈利数”,是的“哈利数”,...,依此类推,则(

)A. B. C. D.【变式2】(2023秋·全国·七年级专题练习)已知整数,,,,……满足下列条件:,,,…,以此类推,则的值为,的值为题型04数字类规律探索之等式问题【典例4】(2022秋·江西九江·七年级统考期中)观察下面的变形规律:;;;解答下面的问题:(1)若为正整数,请你猜想______;(2)计算.(3)计算;.【变式1】(2022秋·湖南永州·七年级校考期中)观察算式:按规律填空:.【变式2】(2023春·安徽合肥·七年级校考期末)观察算式:①;②;③;④;,根据你发现的规律解决下列问题:(1)写出第个算式:______;(2)写出第个算式:______;(3)计算:.题型05图形类规律探索之数字问题【典例5】(2022秋·湖北黄冈·七年级校考阶段练习)如图,根据图形中数的规律,可推断出a的值为(

)A.128 B.216 C.226 D.240【变式1】(2023春·贵州毕节·七年级统考期末)根据图中数字的规律,若第n个图中的值为196,则(

A.12 B.13 C.14 D.15【变式2】(2022秋·河南周口·七年级校考期中)如图所示,下列各三角形中的三个数之间均具有相同的规律,根据此规律,则第(为正整数)个三角形中,用表示的式子为(

A. B. C. D.题型06图形类规律探索之数量问题【典例6】(2023·江苏·七年级假期作业)用大小一样的黑白两种颜色的小正方形纸片,按如图的规律摆放:(1)第5个图案有张黑色小正方形纸片;(2)第n个图案有张黑色小正方形纸片;(3)第几个图案中白色纸片和黑色纸片共有81张?【变式1】(2023秋·全国·七年级专题练习)如图,用棋子摆方阵,那么,图⑥要摆枚棋子,图n要摆枚棋子.【变式2】(2023·安徽淮北·淮北市第二中学校考二模)如图,利用黑白两种颜色的五边形组成的图案,根据图案组成的规律回答下列问题:(1)图案④中黑色五边形有______个,白色五边形有______个;(2)图案中黑色五边形有______个,白色五边形有______个;(用含的式子表示)(3)图案中的白色五边形可能为2023个吗?若可能,请求出的值;若不可能,请说明理由.一、单选题1.(2023秋·全国·七年级专题练习)观察下列各单项式:,…,根据你发现的规律,第10个单项式是(

)A. B. C. D.2.(2023秋·全国·七年级专题练习)一列数,,…,其中,,,…,,则(

)A. B.1 C.2020 D.3.(2023春·河南信阳·七年级校联考阶段练习)如图,用棋子摆出下列一组图形,如果按照这种规律摆下去,那么第10个图形里棋子的个数为(

A.72 B.66 C.56 D.784.(2023春·云南临沧·七年级统考期末)如图,用字母“”、“”按一定规律拼成图案,其中第个图案中有个,第个图案中有6个,第个图案中有个,……,按此规律排列下去,第个图案中字母的个数为(

)

A. B. C. D.5.(2023春·福建宁德·七年级校联考期中)我国宋代数学文杨辉所著《详解九章算法》中记载了用如图所示的一角形解释了二项和的乘方展开式中的系数规律,我们把这种数字三角形叫做“杨辉三角”.请你利用杨辉三角,计算的展开式中,含项的系数是(

…………1

…………1

1

…………1

2

1

…………1

3

3

1

…………1

4

6

4

1A. B.15 C. D.20【答案】C【分析】根据图中规律,可得的展开式中含项的系数,再根据的展开式中,系数的绝对值与的展开式中的系数相同,符号从左往后为奇数项为正,偶数项为负.【详解】解:由题意可知,下排每个数等于上方两个数字的绝对值之和,的展开式系数从左往右分别是,的展开式系数从左往右分别是,根据图中,可知含有项的项为从左往右第四项,且符号为负,故的展开式中,含项的系数是,故选:C.【点睛】本题考查了数字变化规律,通过观察、分析、归纳发现其中规律,并应用发现的规律是解题的关键.二、填空题6.(2022秋·四川南充·七年级校考期中)正整数按图中的规律排列.由图知,数字6在第二行,第三列,请写出数字2021在第行,第列.

7.(2023春·山东泰安·六年级校考期中)观察下列各式,探索规律:;;;;;用含正整数n的等式表示你所发现的规律为.8.(2023春·黑龙江绥化·七年级校考期末)观察下列算式:,,,,,,根据上述算式中的规律,你认为的末位数字是.9.(2023春·河北石家庄·七年级行唐一中校考开学考试)观察下列图形的构成规律,按此规律,第6个图形中棋子的个数为个,第n个图形中棋子的个数为个.

10.(2022秋·江苏宿迁·七年级校考阶段练习)已知整数满足下列条件:,,,,…,(为正整数)依此类推,则的值为.三、解答题11.(2022春·黑龙江哈尔滨·六年级哈尔滨市第十七中学校校考阶段练习)观察下列三行数:,4,,16,,64,……0,6,,18,,66,……,1,,4,,16……(1)第①行数第七个数是,那么第二行数第七个数是_____,第三行第七个数是_____.(2)列式计算:取每行的第9个数,求这三个数的和.12.(2023春·云南昭通·七年级统考期中)小明计算:的过程如下:解:令则得∴请参照小明的方法,计算:.13.(2023春·安徽阜阳·七年级校考阶段练习)观察下列图形,完成下列问题.

(1)数一数,完成下列表格.直线的条数交点的个数(2)若有条直线相交,则最多有交点__________个.(用含的代数式表示)14.(2022秋·江苏连云港·七年级校考阶段练习)观察下列各式:,,,回答下面的问题:(1)(写出算式即可);(2)计算的值;(3)计算的值.15.(2022秋·江苏宿迁·七年级校考阶段练习)探索规律:观察下面※由组成的图案和算式,解答问题:

(1)请猜想_________;(2)请猜想_________;(3)请用上述规律计算:的值.16.(2023秋·浙江·七年级专题练习)找规律,完成下列各题:

(1)如图①,把正方形看作,.(2)如图②,把正方形看作,.(3)如图③,把正方形看作,.(4)计算:.(5)计算:.17.(2023春·安徽·九年级专题练习)用若干个“○”与“▲”按如图方式进行拼图:

(1)观察图形,寻找规律,并将下面的表格填写完整:图1图2图3图4○的个数3921______▲的个数1410______(2)根据你所观察到的规律,分别写出图中“○”与“▲”的个数(用含的代数式表示).18.(2023·河北秦皇岛·统考一模)为迎接七一建党节,某社区党委在广场上设计了一座三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论