反比例函数的图像和性质_第1页
反比例函数的图像和性质_第2页
反比例函数的图像和性质_第3页
反比例函数的图像和性质_第4页
反比例函数的图像和性质_第5页
已阅读5页,还剩89页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

17.4.2反比例函数的图像和性质2021/5/911.反比例函数的定义:3.反比例函数的确定:4.它的三种常见的表达形式:2.反比例函数的特征:叫做反比例函数.函数k≠0,

x≠0.

x是-1次待定系数法.xy=k(k≠0)y=kx-1(k≠0)复习回顾,引入新课2021/5/925、请回忆:正比例函数的图象和性质

性质

图象名称

解析式图象位于:一、三象限y随x的增大而增大图象位于:二、四象限y随x的增大而减小K>0K<0y=kx(k≠0)直线(过原点)增减性:增减性:2021/5/93作函数图象的一般步骤:知识回顾(二)描点法列表描点连线2021/5/94◆反比例函数的图象x……y……1、列表:2、描点:3、连线:·y-4-3-2-101234x654321-1-2-3-4-5-6O········-0.5-1-2-44210.5◆请你另外取一个正整数k的值,作出其反比例函数图象图象会和坐标轴相交吗?◆通过对k取不同的正值,作出了反比例函数的图象,你发现了反比例函数的图象是什么?分别在哪个象限内?思考:-4-2-1 -0.5 0.51 2 4[注意哟]:图象不会与x轴、y轴相交2021/5/95从画反比例函数图象看,描点法还应注意什么?

反比例函数图象画法步骤:列表描点连线

描点法注意:①列x与y的对应值表时,X的值不能为零,但仍可以零的基础,左右均匀、对称地取值。注意:②描点时自左住右用光滑曲线顺次连结,切忌用折线。注意:③两个分支合起来才是反比例函数图象。2021/5/96·y-4-3-2-101234x654321-1-2-3-4-5-6O·y-4-3-2-101234x654321-1-2-3-4-5-6O◆图象不是直线,是两支曲线,分别在一、三象限内2021/5/97

x画出反比例函数和的函数图象。

y=x6y=x6y=x6y=

x6列表描点连线

描点法合作交流,探究新知2021/5/98123456-1-3-2-4-5-61234-1-2-3-40-6-556yx123456-1-3-2-4-5-61234-1-2-3-40-6-556xy

有两条曲线共同组成一个反比例函数的图像,叫双曲线。

x16233241.551.2616-1-6-2-3-3-1.5-2-4-5-1.2-6-1…………-663-32-21.5-1.51.2-1.21-1……y=x6y=

x6y=x6y=

x62021/5/99

反比例函数图像的两个分支关于原点对称,反比例函数的图像(2个分支作为一个整体)是一个中心对称图形。

2021/5/910

列表(在自变量取值范围内取一些值,并计算相应的函数值)连线描点x…-6-3-2-1…0…1236…Y=…-1-2-3-6…

/…6321…········2021/5/911(1)(2)(3)(4)2021/5/9122021/5/9132021/5/9142021/5/915x…1.21.5…y……54x…-6-3-2-1…0…1236…Y=…-1-2-3-6…

/…6321…2021/5/9162.反比例函数的图象在哪两个象限?由什么确定?3.反比例函数,具有怎样的对称性?4.反比例函数的图象的变化趋势是怎样的,它和两条坐标轴的位置关系是怎样的?1.反比例函数和的图象在哪两个象限?它们相同吗?y=x6xy0yxyx6y=0议一议:2021/5/917关系:在同一直角坐标系下,反比例函数y=6/x于y=-6/x的图像关于x轴对称,也关于y轴对称。6-6xyo12345-1-2-3-4-5-1-2-3-4-5-61324566-6xyo12345-1-2-3-4-5-1-2-3-4-5-6132456y=6/xy=-6/x6-6xyo12345-1-2-3-4-5-1-2-3-4-5-6132456y=6/xy=-6/xy=6/xy=-6/x2021/5/918123456-1-3-2-4-5-61234-1-2-3-40-6-556yx123456-1-3-2-4-5-61234-1-2-3-40-6-556xy发现函数值y怎样随着自变量x的变化而变化?·AB·如图xB<xA但yB<yAD·C·xAxB1、在每一个象限内2、在整个自变量的取值范围内.在每个象限内,y随x的增大而减小,第一象限内的y值总大于第三象限内的y值;在每个象限内,y随x的增大而增大,第二象限内的y值总大于第四象限内的y值2021/5/919反比例函数的性质1.当k>0时,同一象限内函数值y随自变量x的增大而减小;2.当k<0时,同一象限内,函数值y随自变量x的增大而增大。y=x6xy0yxyx6y=02021/5/920当时,在

内,随的增大而

.O

观察反比例函数的图象,说出y与x之间的变化关系:ABOCDABCD减少每个象限当时,在

内,随的增大而

.增大每个象限2021/5/921k>0k<01.函数图象的两个分支分别在第一、三象限图象性质y=反比例函数图象性质2.在每个象限内,y随x的增大而减小,并且第一象限内的y值总大于第三象限内的y值;1.函数图象的两个分支分别在第二、四象限2.在每个象限内,y随x的增大而增大,并且第二象限内的y值总大于第四象限内的y值;3.反比例函数自身都是中心对称图形,对称中心是坐标原点.2.反比例函数图象无限向x,y轴逼近,但总不相交;1.反比例函数的图象是双曲线;

2021/5/922A:xyoB:xyoD:xyoC:xyo1、反比例函数y=-的图象大致是()

D活学活用2021/5/923反比例函数的图象上有两点A(x1,y1),B(x2,y2),且X1<x2

则y1-y2的值是()A正数B负数C非正数D不能确定xyo本题要注意A,B是否在同一象限内若A,B在不同的象限则可能有多种情况出现D数学题目形式灵活多变,大家要善于思考2021/5/924下列函数中y随x的增大而减小的是()A、

B、

C、

D、

C2021/5/9251.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为

.y1>

y2当k>0时:在每一个象限内,y随x的增大而减小2021/5/9261.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为

.(k<0)y2>

y1当k<0时:在每一个象限内,y随x的增大而增大2021/5/9271.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1与y2的大小关系(从大到小)为

.(k<0)A(x1,y1),B(x2,y2)且x1<0<x2yxox1x2Ay1y2By1>0>y22021/5/9281.已知点A(-2,y1),B(-1,y2)都在反比例函数的图象上,则y1、y2与y3的大小关系(从大到小)为

.A(-2,y1),B(-1,y2),C(4,y3)yxo-1y1y2AB-24Cy3y3>y1>y22021/5/9291.下列函数中,其图象位于第一、三象限的有__________;在其所在的每一个象限内,y随x的增大而增大的有_________.2.(1)已知点A(-2,y1),B(-1,y2),C(3,y3)都在反比例函数的图象上,比较y1、y2、y3的大小关系。解:∵k=4>0

∴图象在第一、三象限内,每一象限内y随x的增大而减小

∵x1<x2<0,x3=3>0,∴点A(-2,y1),点B(-1,y2)在第三象限点C(3,y3)在第一象限。∴y3>0,y2<y1<0即y2<

y1<

0<

y3(1)(2)(3)(4)2021/5/9302、已知点(-2,y1)(-1,y2)(3,y3)在y=4/x的图象上,比较y1,y2,y3,的大小.方法1:X分别取2、1、-2,-1,代入函数式中,求出y1,y2和y3

方法2:作函数图象,将3个点标在曲线上,观察

方法3:利用性质进行分析和判断变式训练:已知y=k/x(k≠0)上三个点

(a1,y1),(a2,y2),(a3,y3),若a1<a2<0<a3,

比较y1,y2,y3的大小2021/5/9314)反比例函数的图象上有两点A(x1,y1),B(x2,y2),且X1<x2

则y1-y2的值是()A正数B负数C非正数D不能确定xyo本题要注意A,B是否在同一象限内若A,B在不同的象限则可能有多种情况出现D数学题目形式灵活多变,大家要善于思考2021/5/932例2已知反比例函数上有两点(-2,y1)(-1,y2)则y1,y2的大小关系是__________________练习2、已知反比例函数上有两点(-2,y1)(-1,y2)则y1,y2的大小关系是__________________练习3、已知反比例函数上有三点(-2,y1)(-1,y2)(1,y3)则y1,y2,y3的大小关系是________________2021/5/9334.在函数(a为常数)的图象上有三点

,函数值的大小关系是()(A)y2<y3<y1.(B)y3<y2<y1.(C)y1<y3<y2.(D)y3<y1<y2.DyxOP3P1P22021/5/934做一做:1.用“>”或“<”填空:(1)已知和是反比例函数的两对自变量与函数的对应值.若,则

(2)已知和是反比例函数的两对自变量与函数的对应值.若,则

.>>>>2021/5/9352.已知(),(),()是反比例函数的图象上的三个点,并且,则的大小关系是()(A)(B)(C)(D)3.已知(),(),()是反比例函数的图象上的三个点,则的大小关系是

.4.已知反比例函数.(1)当x>5时,0

y

1;(2)当x≤5时,则y

1,(3)当y>5时,x?C<<>或y<0

0<x<12021/5/936练一练5若点(-2,y1)、(-1,y2)、(2,y3)在反比例函数的图象上,则()A、y1>y2>y3B、y2>y1>y3C、y3>y1>y2D、y3>y2>y1B2021/5/937C2、在反比例函数的图像上有两点A(x1,y1)、B(x2,y2),当x1<0<x2

时,有y1<y2,

则m的取值范围是()m<0B.m>0

C.m<D.m>yx2x10yx1xx2x0y1y2y1y2C提示:利用图像比较大小简单明了。2021/5/9381、函数的图象在第________象限,在每一象限内,y随x的增大而_________.2、函数的图象在第________象限,在每一象限内,y随x的增大而_________.3、函数,当x>0时,图象在第____象限,y随x的增大而_________.一、三二、四一减小增大减小练一练12021/5/9394.函数的图象在第_____象限,5.双曲线经过点(-3,___)y=x5y=13x二,四916.函数的图象在二、四象限,则m的取值范围是____.7.对于函数,当x<0时,图象在第________象限.m-2xy=m<2三y=13x2021/5/940五、大显身手:1、已知反比例函数(k≠0)的图象经过点P(-1,2),则这个函数的图象位于()。A、第二、三象限B、第一、三象限

C、第三、四象限

D、

第二、四象限2、已知反比例函数,下列结论不正确的是()。A、图象经过点(1,1)B、图象在第一、三象限C、当x>1时,0<y<1D、

当x<0时,y随x的增大而增大。DD2021/5/941例1:已知反比例函数y=(k≠0)的图象的一支如图。(1)判断k是正数还是负数;(2)求这个反比例函数的解析式;yx0(-4,2)(3)补画这个反比例函数图象的另一支。x0(-4,2)y例题解析,图像的分支在第二象限,所以K<0把(-4,2)代入y=中,得到K=-8所以反比例函数的解析式;y=-kx8x2021/5/942正、反比例函数的图象与性质的比较:正比例函数反比例函数解析式增减性直线双曲线k>0,一、三象限;k<0,二、四象限.k>0,y随x的增大而增大;k>0,一、三象限;k<0,二、四象限.k<0,y随x的增大而减小.k>0,在每个象限y随x的增大而减小;k<0,在每个象限y随x的增大而增大.图象位置2021/5/9434.反比例函数,在每一象限内,y随x的增大而减小,则m=______.2.反比例函数的图象经过点(2,-3),则它必经过点(-1,____).1.反比例函数经过点(m,2),则m的值____.性质应用3.对于函数,当x>0时,图象在第______象限,y随x的值增大而________,当x<0时图象在第______象限,y随x的值增大而________.四二增大增大3262021/5/944已知反比例函数,y随x的增大而减小,求a的值和表达式.补充练习:2021/5/9455.下列函数中y随x的值增大而减小的有()A.y=3xB.y=3/xC.y=-3/xD.y=-3x6.y=3/x,当x>0时图象在第______象限,y随x的值增大而_____,当x<0时图象在第______象限,y随x的值增大而______7.下列函数中y随x的值增大而增大的有()A.y=-2x+1B.y=3/xC.y=-3/x(x<0)D.y=-2xD一三减小减小cx的正负确定反比例函数的象限k的正负决定反比例函数的增减性2021/5/946例1、已知反比例函数的图象经过点A(1,4)y=xk(1)①求此反比例函数的解析式;

②画出图像;

③并判断点B(-4,-1)是否在此函数图像上。(2)根据图像得,若y﹥

4,则x的取值范围-----------若x﹤

1,则y的取值范围-----------1A(1,4)yxoB4(3)若点(x1,y1),(x2,y2),(x3,y3),均在此函数图像上,且x1

﹤0﹤x2

﹤x3请比较y1、y2、y3的大小2021/5/947(4

)若过A点作AP⊥x轴于点P,求三角形AOP的面积。PA(1,4)yxB4O2021/5/948小明在学完反比例函数性质后做课外练习时又遇到了它百思不得其解的题目,你能帮他解决吗?xyoPFE已知P(2,)为反比例函数图象上第一象限的点,过P分别作x轴、y轴的平行线PE、PF,与坐标轴围成的矩形PEOF的面积为多少?分析:解这道题关键要弄清长、宽

解:依题意得PE=2,PF=S矩形PEOF=PE×PF=2×=1B结果一样,注意点在第三象限,求解的过程中要长宽加绝对值若点B(-3,)点C(4,)同样方法构造矩形,结果会怎样吗?C2021/5/949如果题目再变化一下,大家思考一下又该怎样解?已知点P为反比例函数上的点,过P分别作x轴、y轴的平行线PE、PF,与坐标轴围成的矩形PEOF的面积为多少?xyoPEF分析:要解这题,关键表达出长、宽即要求PE、PF你能从本题得到什么启发吗?无论点在图象上的何位置所围成的矩形面积都是定值2021/5/950P(m,n)AoyxBP(m,n)AoyxB

探究与发现面积性质(一)2021/5/951(5)若D、E、F是此反比例函数在第三象限图像上的三个点,过D、E、F分别作x轴的垂线,垂足分别为M,N、K,连接OD、OE、OF,设△ODM、△OEN、△OFK的面积分别为S1、S2、S3,则下列结论成立的是()AS1﹤S2﹤S3BS1﹥S2﹥S3

CS1﹤S3﹤S3DS1=S2=S3yxoDEFMNKA(1,4)2021/5/952P(m,n)AoyxP(m,n)Aoyx2021/5/953P(m,n)AoyxP(m,n)Aoyx想一想若将此题改为过P点作y轴的垂线段,其结论成立吗?2021/5/954解:由性质(1)得AA.S1=S2=S3

B.S1<S2<S3

C.S3<S1<S2

D.S1>S2>S3

BA1oyxACB1C1S1S3S22021/5/955A.S1>S2

B.S1<S2

C.S1=S2

D.S1与S2的大小关系不能确定c

如图,A、C是函数

的图象上的任意两点,过A作x轴的垂线,垂足为B,过C作y轴的垂线,垂足为D,记RtΔAOB的面积为S1,RtΔCOD的面积为S2,则()

S1S24、2021/5/956任意一组变量的乘积是一个定值,即xy=k长方形面积三角形的面积面积不变性︳mn︱=︳K︱PDoyxxyoMNp(m,n)(m,n)过反比例函数图象上任意一点向x轴,y轴作垂线,与坐标轴围成的矩形面积等于|k|,若与原点相连,所构成的直角三角形的面积等于|k|/2.2021/5/9571.如图,点P是反比例函数图象上的一点,PD⊥x轴于D.则△POD的面积为

.2.如图,点P是反比例函数图象上的一点,过点P分别向x轴、y轴作垂线,若阴影部分面积为3,则这个反比例函数的关系式是

.PDoyxxyoMNp2练一练32021/5/9583.已知,点P是反比例函数图象上的一点,作PA⊥x轴于A,若直角三角形AOP的面积是3,则这个反比例函数的解析式为()

ABCD或或C2021/5/9594、如图:四边形OABC是边长为1的正方形,反比例函数的函数图象过点B,则k的值为()yxoABC12021/5/960感悟中考:5、(04’南昌)如图:点P是反比例函数y=-上的一点,PD⊥x轴于点D,则⊿POD的面积为6、(06’山西)在平面直角坐标系内,从反比例函数y=的图象上一点分别作x、y轴的垂线段,与x、y轴所围成的矩形的面积是12,则该函数解析式是x2OPDxy1xky=或y=-x1212x2021/5/9617、图中两个三角形的面积各是___

128、S⊿ABC的面积=____22021/5/962P(m,n)AoyxP/2021/5/96321、(2006年重庆市)如图所示.如果函数y=-kx(k≠0)与图像交于A、B两点,过点A作AC垂直于y轴,垂足为点C,则△BOC的面积为

.S⊿BOC=S⊿AOCS⊿AOC=∣-4∣=

2D拓展:2021/5/964oACxByDCDoAxBy2、四边形ABCD的面积=_____22021/5/965

相交于A、B两点.过A作x轴的垂线、过B

作y轴的垂线,垂足分别为D、C,设梯形ABCD的面积为S,则()A.S=6B.S=3C.2<S<3

D.3<S<6.3.如图,正比例函数

与反比例函数

xyABCDOB

2021/5/966

如图,在直角坐标系中,一次函数y=k1x+b的图像与反比例函数的图像交于A(1,4),B(3,m)两点(1)求反比例函数解析式(2)求△AOB面积

EMNxyOA(1,4)B(3,m)拓展提高2021/5/967例3已知反比例函数的图象经过点(3,-4)(1)写出函数关系式(2)根据函数图象,当x取什么值时,函数值小于0?(3)当时,求y的取值范围?yox-3-1解:(1)将(3,4)代入得(2)x>0时,函数值小于0(3)当x=-3时,当x=-1时,由图象知,当-3<x<-1时,4<y<122021/5/968

考察函数的图象,当x=-2时,y=___,

当x<-2时,y的取值范围是

_____;

当y﹥-1时,x的取值范围是

_________.-1-1<y<0x<-2或x>02021/5/969已知反比例函数.(1)当x>5时,0

y

1;(2)当x≤5时,则y

1,或y<

.(3)当y>5时,x?<<≥00<

x<12021/5/970直线与双曲线3.如图,正比例函数的图象与反比例函数的图象相交于A、B两点,其中点A的坐标为.(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴交流?2021/5/971(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?你是怎样求的?与同伴交流?解:(1)把A点坐标分别代入y=k1x,和y=k2/x,解得k1=2.k2=6所以所求的函数表达式为:y=2x,和y=6/x.(2)B点的坐标是两个函数组成的方程组的一个解.反比例函数与正比例函数的交点问题:列方程组,求公共解,即交点坐标利用反比例函数的中心对称性。2021/5/972总结:正比例函数与反比例函数图象若相交,则两个交点关于原点中心对称。2021/5/973(3)你能利用图象直接写出不等式的解集吗?y=2xy=6/x2021/5/9741.在同一直角坐标平面内,如果直线与双曲线没有交点,那么和的关系一定是()<0,

>0

B、>0,<0C

、同号

异号A、D、2.已知k<0,则函数y1=kx,y2=

在同一坐标系中的图象大致是()xy0xy0xy0xy0(A)(B)(C)(D)DxkD2021/5/975OxyACOxyDxyoOxyBD2021/5/9762.若,则函数与

在同一平面直角坐标系中的图象大致是()B6、在同一直角坐标系中,正比例函数y=k1x与反比例函数y=k2∕x没有交点,则两个常数的乘积k1·k2的取值范围是

。k1·k2

<02021/5/977A(2,2)Oyx⑴直线OA与双曲线的另一交点B的坐标.BDC⑵△BDA的面积是多少?B(-2,-2)8曲直结合2021/5/978小结函数正比例函数反比例函数表达式图象及象限性质在每一个象限内:当k>0时,y随x的增大而减小;当k<0时,y随x的增大而增大.y=kx(k≠0)(特殊的一次函数)当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.k<0xyoxyok>0k<0yx0y0k>0x2021/5/9792.反比例函数的图象性质特征:图象是双曲线当k>0时,双曲线分别位于第一,三象限内当k<0时,双曲线分别位于第二,四象限内当k>0时,在每一象限内,y随x的增大而减小当k<0时,在每一象限内,y随x的增大而增大双曲线无限接近于x、y轴,但永远不会与坐标轴相交双曲线是中心对称图形.任意一组变量的乘积是一个定值,即xy=k形状位置增减性变化趋势对称性面积不变性长方形面积︳mn︱=︳K︱P(m,n)AoyxB反比例函数与正比例函数的交点问题:列方程组,求公共解,即交点坐标利用反比例函数的中心对称性。2021/5/980交点问题:一、交点问题:1、与坐标轴的交点问题:无限趋近于x、y轴,与x、y轴无交点。2、与正比例函数的交点问题:利用反比例函数的中心对称性。列方程组,求公共解,即交点坐标。2021/5/981基础再现:1.己知函数的图象是双曲线,且y随x的增大而增大,则m=______;-12.如果反比例函数的图象位于第二、四象限,那么m的范围为

.m>3.若反比例函数的图象与正比例函数的图象有公共点,则反比例函数在第_________象限.一、三2021/5/982动手操作炼就火眼金睛1.已知点A(-2,y1),B(-1,y2),C(3,y3)都在y=4/x上,比较y1,y2,y3的大小2.变式练习:已知点A(-2,y1),B(-1,y2),C(3,y3)都在y=k/x上,比较y1,y2,y3的大小.3.反比例函数y=(m+1)/x经过点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1>y2,则m的取值范围是________

y3>y1>y2当K>0时,y3>y1>y2

当k<0时,y2>y1>y3m<-1注意数形结合!小心!这里有陷阱!2021/5/983补充练习1、反比例函数与正比例函数在同一坐标系中的图象不可能的是()(A)(B)(C)(D)D2021/5/9841、反比例函数的图象在

象限?反比例函数的图象在

象限?它们关于

成轴对称。课内练习:y=x7y=-x72、已知反比例函数当x>5时,y

1;

当x<5时,则y

。y=x5一、三二、四坐标轴<

y>1或y<o2021/5/985复习题:1.反比例函数的图象经过点(-1,2),那么这个反比例函数的解析式为

,图象在第

象限,它的图象关于

成中心对称.2.反比例函数的图象与正比例函数的图象交于点A(1,m),则m=

,反比例函数的解析式为

,这两个图象的另一个交点坐标是

二、四坐标原点2(-1,-2)2021/5/9864.在函数(a为常数)的图象上有三点

,函数值的大小关系是()(A)y2<y3<y1.(B)y3<y2<y1.(C)y1<y3<y2.(D)y3<y1<y2.DyxOP3P1P22021/5/987巩固训练一一、判断1)在每一象限内,y随x的增大而减小()2)在每一象限内,y随x的增大而增大()二、2)反比例函数,当x=1时,y=2,则k=,y随x的减小而错错2增大象限,Y随x的增大而(注意:做题时审清题目的问法)3)若反比例函数在每一象限内,y随x的增大而

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论