协方差与相关系数_第1页
协方差与相关系数_第2页
协方差与相关系数_第3页
协方差与相关系数_第4页
协方差与相关系数_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

协方差与相关系数对于二维随机向量(X,Y)来说,数学期望E(X)、E(Y)只反映了X与Y各自的平均值,方差只反映了X与Y各自离开均值的偏离程度,它们对X与Y之间相互关系不提供任何信息.但二维随机向量(X,Y)的概率密度p(x,y)或分布列pij全面地描述了(X,Y)的统计规律,也包含有X与Y之间关系的信息.我们希望有一个数字特征能够在一定程度上反映这种联系.问题的提出:2021/5/91二、相关系数的概念及性质一、协方差的概念及性质三、协方差的关系式2021/5/92定义:设二维随机向量(X,Y)的数学期望(E(X),E(Y))存在,若E[(X-E(X))(Y-E(Y))]存在,则称它为随机变量X与Y的协方差,记为Cov(X,Y),即Cov(X,Y)=E[(X-E(X))(Y-E(Y))]协方差有计算公式Cov(X,Y)=E(XY)-E(X)E(Y)任意两个随机变量X与Y的和的方差为D(X+Y)=D(X)+D(Y)+2Cov(X,Y)§1协方差2021/5/93协方差的性质1.2.a,b是常数3.4.2021/5/94定理:Cov(X,Y)=Cov(Y,X)证明

Cov(X,Y)=E[(X-E(X))(Y-E(Y))]=E[(Y-E(Y))(X-E(X))]=Cov(Y,X)定理:

Cov(aX,bY)=abCov(X,Y),a,b是常数证明

Cov(aX,bY)=E[(aX-E(aX))(bY-E(bY))]=E{[a(X-E(X))][b(Y-E(Y))]}=abE{[X-E(X)][Y-E(Y)]}=abCov(X,Y)2021/5/95定理:Cov(X+Y,Z)=Cov(X,Z)+Cov(Y,Z)证明Cov(X+Y,Z)=E{[(X+Y)-E(X+Y)][Z-E(Z)]=E{[(X-E(X))+(Y-E(Y))][Z-E(Z)]}=E{[X-E(X)][Z-E(Z)]+[Y-E(Y)][Z-E(Z)]}=E{[X-E(X)][Z-E(Z)]}+E{[Y-E(Y)][Z-E(Z)]}=Cov(X,Z)+Cov(Y,Z)2021/5/96协方差的数值在一定程度上反映了X与Y相互间的联系,但它受X与Y本身数值大小的影响.如令X*=kX,Y*=kY,这时X*与Y*间的相互联系和X与Y的相互联系应该是一样的,但是Cov(X*,Y*)=k2Cov(X,Y)为了克服这一缺点,在计算X与Y的协方差之前,先对X与Y进行标准化:再来计算X*和Y*的协方差,这样就引进了相关系数的概念.2021/5/97定义:设二维随机变量(X,Y)的方差D(X)>0,D(Y)>0,协方差Cov(X,Y)均存在,则称为随机变量X与Y的相关系数或标准协方差.§2相关系数2021/5/98引理:对于二维随机向量(X,Y),若E(X2),E(Y2)存在,则有|E(XY)|2≤E(X2)E(Y2)证明:考虑实变量t的二次函数h(t)=E[(tX-Y)2]=t2E(X2)-2tE(XY)+E(Y2)因为对一切t,有(tX-Y)2≥0,所以h(t)≥0.从而二次方程h(t)=0或者没有实根,或者只有重根,因而,由二次方程根的判别式知识得|E(XY)|2≤E(X2)E(Y2)2021/5/99§2.1相关系数的性质性质1:随机变量X和Y的相关系数满足|ρXY|≤1.性质2:

|ρXY|=1的充要条件是,存在常数a,b使得P{Y=a+bX}=1.性质3:若X与Y相互独立,则ρXY=0.2021/5/910性质1:随机变量X和Y的相关系数满足|ρXY|≤1.证明令则从而|ρXY|≤1.2021/5/911性质2:|ρXY|=1的充要条件是,存在常数a,b使得

P{Y=aX+b}=1证明令由ρXY2=[E(X*Y*)]2≤E(X*)E(Y*)=1知|ρXY|=1等价于[E(X*Y*)]2-E(X*)E(Y*)=0它又等价于h(t)=E[(tX*-Y*)2]=0有重根t0.又因为E(t0X*-Y*)=t0E(X*)-E(Y*)=0所以D(t0X*-Y*)=0,由方差的性质知它等价于P{t0X*-Y*

=0}=1,即P{Y=aX+b}=1其中a=t0σ(Y)/σ(X),b=E(Y)-t0E(X)

σ(Y)/σ(X).2021/5/912性质3:若X与Y相互独立,则ρXY=0.证明若X与Y相互独立,则E(XY)=E(X)E(Y),又Cov(X,Y)=E(XY)-E(X)E(Y),所以2021/5/913§2.2相关系数的含义考虑以X的线性函数a+bX来近似表示Y.以均方误差e=E{[Y-(a+bX)]2}=E(Y2)+b2E(X2)+a2-2bE(XY)+2abE(X)-2aE(Y)来衡量以a+bX近似表达Y的好坏程度.e的值越小表示a+bX与Y的近似程度越好.为此令从而得解得2021/5/914相关系数只是随机变量间线性关系强弱的一个度量.当|ρXY|=1时,说明X与Y间存在着线性关系(除去一个零概率事件以外).当|ρXY|<1时,这种线性相关程度随着ρXY的减小而减弱.定义:(1)当ρXY=1时,称X与Y正线性相关;(2)当ρXY=-1时,称X与Y负线性相关;(3)当ρXY=0时,称X与Y不相关.注:(1)X与Y不相关,只是意味着X与Y不线性相关,但可能存在着别的函数关系;(2)若ρXY存在,则当X与Y独立时,X与Y一定不相关;但X与Y不相关时,X与Y不一定独立.2021/5/915oXYoooXXXYYY0<ρ<1-1<ρ<0ρ=1ρ=-1相关情况示意图2021/5/916证由协方差的定义及数学期望的性质,得定理:§3协方差的关系式2021/5/917证由方差公式及协方差的定义,得定理:2021/5/918YX-10100.07

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论