版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第6讲一元二次方程应用(二)懂得运用一元二次方程解决有关销售利润问题;懂得运用一元二次方程解决有关几何面积问题;懂得运用一元二次方程解决几何中的动点问题。知识点1:销售利润问题:(1)常用公式:利润=售价-成本;总利润=每件利润×销售量;(2)每每问题中,单价每涨a元,少买y件。若涨价y元,则少买的数量为知识点2:几何面积问题(1)如图①,设空白部分的宽为x,则;(2)如图②,设阴影道路的宽为x,则(3)如图③,栏杆总长为a,BC的长为b,则知识点3:动点与几何问题关键是将点的运动关系表示出来,找出未知量与已知量的内在联系,根据面积或体积公式列出方程.【题型1销售利润问题】【典例1】(2022秋•信宜市校级期中)某超市以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示.(1)y与x之间的函数关系式为;(2)当每千克干果降价1元时,超市获利多少元?(3)若超市要想获利2210元,且让顾客获得更大实惠,这种干果每千克应降价多少元?【解答】解:(1)设y与x之间的函数关系式为y=kx+b(k≠0),将(2,120),(4,140)代入y=kx+b得:,解得:,∴y与x之间的函数关系式为y=10x+100(0<x<20).故答案为:y=10x+100(0<x<20).(2)(60﹣1﹣40)×(10×1+100)=(60﹣1﹣40)×(10+100)=19×110=2090(元).答:当每千克干果降价1元时,超市获利2090元.(3)根据题意得:(60﹣x﹣40)(10x+100)=2210,整理得:x2﹣10x+21=0,解得:x1=3,x2=7,又∵要让顾客获得更大实惠,∴x=7.答:这种干果每千克应降价7元.【变式1-1】(2021秋•天府新区期末)2022年冬奥会即将在北京召开,某文化用品店购进了一批以冬奥会为主题的手抄本进行销售,手抄本的进价每本3元,已知这种手抄本每天销售量y(本)与销售单价x(元)(3≤x≤9)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)若销售这款手抄本每天所获得的利润仅为120元,求销售单价应为多少元?【答案】(1)y=﹣10x+100(2)6元或7元【解答】解:(1)由题意:设y与x之间的函数关系式为:y=kx+b(k≠0),将(3,70),(9,10)代人得:,解得:,∴y与x之间的函数关系式为:y=﹣10x+100;(2)由题意得:(x﹣3)y=120,即(x﹣3)(﹣10x+100)=120,解得:x=6或x=7,∴销售单价应为6元或7元【变式1-2】(2022秋•顺德区期中)佛山市加快建设制造业创新高地,全球每生产两台微波炉就有一台出自顺德.一商场从顺德以每台430元的价格进货一批微波炉,计划以每台500元销售.在销售过程中发现:每月微波炉的销售量y(台)与每台微波炉上涨价格x(元)之间满足一次函数关系,如图是y与x的函数图象.(1)求y与x之间的函数解析式;(2)若该商场要求微波炉的月销售量不少于750台,并且每月销售微波炉的利润率不低于20%,当该商场每月微波炉的销售利润为71250元时,微波炉的销售单价应定为多少?【解答】解:(1)设y与x之间的函数解析式为y=kx+b(k≠0),将(35,650),(50,500)代入y=kx+b得:,解得:,∴y与x之间的函数解析式为y=﹣10x+1000.(2)依题意得:(500+x﹣430)(﹣10x+1000)=71250,整理得:x2﹣30x+125=0,解得:x1=5,x2=25,当x=5时,﹣10x+1000=﹣10×5+1000=950>750,利润率为×100%≈17.44%<20%,不符合题意;当x=25时,﹣10x+1000=﹣10×25+1000=750,利润率为×100%≈22.09%>20%,符合题意,∴500+x=500+25=525.答:微波炉的销售单价应定为525元.【变式1-3】(2023•临川区校级一模)某超市经销一种商品,每千克成本为30元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如表所示:销售单价x(元/千克)40455560销售量y(千克)80705040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)若商店按销售单价不低于成本价,且不高于60元的价格销售,要使销售该商品每天获得的利润为800元,求每天的销售量应为多少千克?【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将(40,80),(45,70)代入y=kx+b得:,解得:,∴y与x之间的函数表达式为y=﹣2x+160.(2)依题意得:(x﹣30)(﹣2x+160)=800,整理得:x2﹣110x+2800=0,解得:x1=40,x2=70.又∵商店按销售单价不低于成本价,且不高于60元的价格销售,∴x=40,∴﹣2x+160=﹣2×40+160=80.答:每天的销售量应为80千克.【典例2】(2022•南海区一模)某商场以每件210元的价格购进一批商品,当每件商品售价为270元时,每天可售出30件,为了迎接“双十一购物节”,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每天就可以多售出3件.(1)降价前商场每天销售该商品的利润是多少元?(2)要使商场每天销售这种商品的利润达到降价前每天利润的两倍,且更有利于减少库存,则每件商品应降价多少元?【答案】(1)1800元(2)30元【解答】解:(1)(270﹣210)×30=1800(元).∴降价前商场每天销售该商品的利润是1800元.(2)设每件商品应降价x元,由题意,得(270﹣x﹣210)(30+3x)=1800×2,解得x1=20,x2=30.∵要更有利于减少库存,∴x=30.答:每件商品应降价30元.【变式2-1】(2023春•西湖区校级期中)“抖音”平台爆红网络,某电商在“抖音”上直播带货,已知该产品的进货价为70元/件,为吸引流量,该电商在直播中承诺自家商品价格永远不会超过99元/件,根据一个月的市场调研,商家发现当售价为110元/件时,日销售量为20件,售价每降低1元,日销售量增加2件.(1)当销售量为30件时,产品售价为105元/件;(2)直接写出日销售量y(件)与售价x(元/件)的函数关系式;(3)该产品的售价每件应定为多少,电商每天可盈利1200元?【答案】(1)105;(2)y=﹣2x+240(70≤x≤99);(3)90元.【解答】解:(1)110﹣=110﹣=110﹣5=105(元/件),∴当销售量为30件时,产品售价为105元/件.故答案为:105;(2)根据题意得:y=20+2(110﹣x)=﹣2x+240,∵该产品的进货价为70元/件,且该电商在直播中承诺自家商品价格永远不会超过99元/件,∴日销售量y(件)与售价x(元/件)的函数关系式为y=﹣2x+240(70≤x≤99);(3)根据题意得:(x﹣70)(﹣2x+240)=1200,整理得:x2﹣190x+9000=0,解得:x1=90,x2=100(不符合题意,舍去).答:该产品的售价每件应定为90元.【变式2-2】(2023春•余姚市校级期中)2023年杭州亚运会吉祥物一开售,就深受大家的喜欢.某商店销售亚运会吉祥物,在销售过程中发现,当每件获利125元时,每天可出售50件,为了扩大销售量增加利润,该商店决定采取适当的降价措施,经市场调查发现,如果每件吉祥物降价5元,平均可多售出1件.(1)若每件吉祥物降价20元,商家平均每天能盈利多少元?(2)每件吉祥物降价多少元时,能尽量让利于顾客并且让商家平均每天盈利5980元?【答案】(1)商家平均每天能盈利5670元;(2)每件吉祥物降价10元时,能尽量让利于顾客并且让商家平均每天盈利5980元.【解答】解:(1)(125﹣20)×(50+)=105×54=5670(元).答:商家平均每天能盈利5670元.(2)设每件吉祥物降价x元,则每件的销售利润为(125﹣x)元,每天的销售量为(50+)件,依题意得:(125﹣x)(50+)=5980,整理得:x2+125x﹣1350=0,解得:x1=﹣135(不合题意,舍去),x2=10.答:每件吉祥物降价10元时,能尽量让利于顾客并且让商家平均每天盈利5980元.【变式2-3】(2022秋•宁德期末)随着正定旅游业的快速发展,外来游客对住宿的需求明显增大,某宾馆拥有的床位数不断增加.(1)该宾馆床位数从2016年底的200个增长到2018年底的288个,求该宾馆这两年(从2016年底到2018年底)拥有的床位数的年平均增长率;(2)根据市场表现发现每床每日收费40元,288张床可全部租出,若每床每日收费提高10元,则租出床位减少20张.若想平均每天获利14880元,同时又减轻游客的经济负担每张床位应定价多少元?【解答】解:(1)设该宾馆这两年床位的年平均增长率为x,依题意,得:200(1+x)2=288,解得:x1=0.2=20%,x2=﹣2.2(舍去).答:该宾馆这两年床位的年平均增长率为20%.(2)设每张床位定价m元,依题意,得:m(288﹣20•)=14880,整理,得:m2﹣184m+7440=0,解得m1=60,m2=124.∵为了减轻游客的经济负担,∴x=60.答:每张床位应定价60元.【题型2几何面积问题】【典例3】(2022春•长兴县月考)某单位要兴建一个长方形的活动区(图中阴影部分),根据规划活动区的长和宽分别为21m和12m,同时要在它四周外围修建宽度相等的小路.已知活动区和小路的总面积为400m2.(1)求小路的宽度;(2)某公司希望用50万元承包这项工程,该单位认为金额太高需要降价,通过两次协商,最终以40.5万元达成一致.若两次降价的百分率相同,求每次降价的百分率.【答案】(1)2m(2)10%【解答】解:(1)设小路的宽度是xm,根据题意得:(21+2x)(12+2x)=400,整理得:4x2+66x﹣148=0,解得:x1=2,x2=﹣18.5(舍去).答:小路的宽度是2m;(2)设每次降价的百分率为y,依题意得:50(1﹣y)2=40.5,解得:y1=0.1,y2=1.9(舍去),答:每次降价的百分率为10%.【变式3-1】(2023•大连一模)如图,物业公司计划整理出一块矩形绿地,为充分利用现有资源,该矩形绿地一面靠墙(墙的长度为10m),另外三面用栅栏围成,已知栅栏总长度为18m,若矩形绿地的面积为36m2,求矩形垂直于墙的一边,即AB的长.【答案】6m.【解答】解:设矩形垂直于墙的一边AB的长为xm.由题意得,x(18﹣2x)=36,整理得,x2﹣9x+18=0,解得,x1=3,x2=6,当x=3时,18﹣2x=18﹣2×3=12>10,不符合题意,舍去;当x=6时,18﹣2x=18﹣2×6=6<10,符合题意.答:矩形垂直于墙的一边AB的长为6m.【变式3-2】(2023春•苍南县期中)园林部门计划在某公园建一个长方形花圃ABCD,花圃的一面靠墙(墙足够长),另外三边用木栏围成,如图2所示BC=2AB,建成后所用木栏总长120米,在图2总面积不变的情况下,园林部门在花圃内部设计了一个正方形的网红打卡点和两条宽度相等的小路如图3,小路的宽度是正方形网红打卡点边长的,其余部分种植花卉,花卉种植的面积为1728平方米.(1)求长方形ABCD花圃的长和宽;(2)求出网红打卡点的面积.【答案】(1)长方形ABCD花圃的长为60米,宽为30米;(2)16平方米.【解答】解:(1)设AB=x米,∴BC=2AB=2x米,根据题意,得2x+x+x=120,解得x=30,∴AB=30米,BC=60米,答:长方形ABCD花圃的长为60米,宽为30米;(2)设网红打卡点的边长为m米,根据题意,得(60﹣m)+m2=60×30﹣1728,解得m1=4,m2=﹣24(舍去),∴网红打卡点的面积为4×4=16(平方米),答:网红打卡点的面积为16平方米.【变式3-3】(2021秋•萍乡期末)如图,利用一面墙(墙EF最长可利用28m),围成一个矩形花园ABCD,与墙平行的一边BC上要预留2m宽的入口(如图中MN所示,不用砌墙),现有砌60m长的墙的材料.(1)当矩形的长BC为多少米时,矩形花园的面积为300m2;(2)能否围成面积为480m2的矩形花园,为什么?【答案】(1)12m(2)不能围成面积为480m2的矩形花园.【解答】解:(1)设BC=xm,则AB=m,依题意得:x•=300,整理得:x2﹣62x+600=0,解得:x1=12,x2=50.又∵墙EF最长可利用28m,∴x=12.答:当矩形的长BC为12m时,矩形花园的面积为300m2.(2)不能围成面积为480m2的矩形花园,理由如下:设BC=ym,则AB=m,依题意得:y•=480,整理得:y2﹣62y+960=0,解得:y1=30,y2=32.又∵墙EF最长可利用28m,∴y1=30,y2=32均不符合题意,舍去,∴不能围成面积为480m2的矩形花园.【题型3动点与几何问题】【典例4】(2022•霍林)如图所示,在Rt△ABC中.∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.当P、Q两点中有一点到达终点,则同时停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积为4cm2.(2)如果P、Q分别从A、B同时出发,那么几秒后,PQ的长度等于5cm.(3)在(1)中△PBQ的面积能否等于7cm2?说明理由.【答案】(1)1秒(2)2秒(3)不可能等于7cm2.【解答】解:(1)设x秒后,△BPQ的面积为4cm2,此时AP=xcm,BP=(5﹣x)cm,BQ=2xcm,由BP×BQ=4,得(5﹣x)×2x=4,整理得:x2﹣5x+4=0,解得:x=1或x=4(舍去).当x=4时,2x=8>7,说明此时点Q越过点C,不合要求,舍去.答:1秒后△BPQ的面积为4cm2.(2)由BP2+BQ2=52,得(5﹣x)2+(2x)2=52,整理得x2﹣2x=0,解方程得:x=0(舍去),x=2.所以2秒后PQ的长度等于5cm;(3)不可能.设(5﹣x)×2x=7,整理得x2﹣5x+7=0,∵b2﹣4ac=﹣3<0,∴方程没有实数根,所以△BPQ的面积为的面积不可能等于7cm2.【变式4-1】(2023春•西湖区校级期中)如图,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC向点C以2cm/s的速度移动,当点Q到达点C时,P,Q均停止运动,若△PBQ的面积等于4cm2,则运动时间为()A.1秒 B.4秒 C.1秒或4秒 D.1秒或秒【答案】A【解答】解:当运动时间为t秒时,PB=(5﹣t)cm,BQ=2tcm,根据题意得:PB•BQ=4,即(5﹣t)•2t=4,整理得:t2﹣5t+4=0,解得:t1=1,t2=4,当t=4时,2t=2×4=8>7,不符合题意,舍去,∴t=1.∴运动时间为1秒.故选:A.【变式4-2】(2022秋•澄迈县期末)如图,△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,同时点Q从点B开始,沿BC边向点C以2cm/s的速度移动,点Q到达点C后,点P停止运动.(1)经过ts后(t>0),△PBQ的面积等于4cm2,求t的值;(2)经过ts后,(t>0),PQ的长度为5cm,求t的值;(3)△PBQ的面积能否等于8cm2?【答案】(1)1;(2)2;(3)△PBQ的面积不能等于8cm2,理由见解答.【解答】解:∵5÷1=5(s),7÷2=(s),5>,∴0<t≤.当运动时间为ts时,BP=(5﹣t)cm,BQ=2tcm.(1)根据题意得:BP•BQ=4,即(5﹣t)×2t=4,整理得:t2﹣5t+4=0,解得:t1=1,t2=4(不符合题意,舍去).答:t的值为1;(2)根据题意得:(5﹣t)2+(2t)2=52,整理得:t2﹣2t=0,解得:t1=0(不符合题意,舍去),t2=2.答:t的值为2;(3)△PBQ的面积不能等于8cm2,理由如下:假设△PBQ的面积能等于8cm2,根据题意得:BP•BQ=8,即(5﹣t)×2t=8,整理得:t2﹣5t+8=0,∵Δ=(﹣5)2﹣4×1×8=﹣7<0,∴该方程没有实数根,∴假设不成立,即△PBQ的面积不能等于8cm2.【变式4-3】(2022•泗阳县期末)如图,在△ABC中,∠B=90°,AB=12cm,BC=24cm,动点P从点A出发沿边AB向点B以2cm/s的速度移动,同时动点Q从点B出发沿边BC向点C以4cm/s的速度移动,当P运动到B点时P、Q两点同时停止运动,设运动时间为ts.(1)BP=cm;BQ=cm;(用t的代数式表示)(2)D是AC的中点,连接PD、QD,t为何值时△PDQ的面积为40cm2?【答案】(1)(12﹣2t);4t(2)t=2或4时【解答】解:(1)根据题意得:AP=2tcm,BQ=4tcm,所以BP=(12﹣2t)cm,故答案是:(12﹣2t);4t;(2)如图,过点D作DH⊥BC于H,∵∠B=90°,即AB⊥BC.∴AB∥DH.又∵D是AC的中点,∴BH=BC=12cm,DH是△ABC的中位线.∴DH=AB=6cm.根据题意,得﹣×(12﹣2t)﹣×(24﹣4t)×6﹣×2t×12=40,整理,得t2﹣6t+8=0.解得:t1=2,t2=4,即当t=2或4时,△PBQ的面积是40cm2.1.(2022•河池)某厂家今年一月份的口罩产量是30万个,三月份的口罩产量是50万个,若设该厂家一月份到三月份的口罩产量的月平均增长率为x.则所列方程为()A.30(1+x)2=50 B.30(1﹣x)2=50 C.30(1+x2)=50 D.30(1﹣x2)=50【答案】A【解答】解:设该厂家一月份到三月份的口罩产量的月平均增长率为x,由题意得,30(1+x)2=50.故选:A.2.(2019•广西)扬帆中学有一块长30m,宽20m的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm,则可列方程为()A.(30﹣x)(20﹣x)=×20×30 B.(30﹣2x)(20﹣x)=×20×30 C.30x+2×20x=×20×30 D.(30﹣2x)(20﹣x)=×20×30【答案】D【解答】解:设花带的宽度为xm,则可列方程为(30﹣2x)(20﹣x)=×20×30,故选:D.3.(2022•青海)如图,小明同学用一张长11cm,宽7cm的矩形纸板制作一个底面积为21cm2的无盖长方体纸盒,他将纸板的四个角各剪去一个同样大小的正方形,将四周向上折叠即可(损耗不计).设剪去的正方形边长为xcm,则可列出关于x的方程为.【答案】(11﹣2x)(7﹣2x)=21【解答】解:由题意可得:(11﹣2x)(7﹣2x)=21,故答案为:(11﹣2x)(7﹣2x)=21 4.(2020•西藏)列方程(组)解应用题某驻村工作队,为带动群众增收致富,巩固脱贫攻坚成效,决定在该村山脚下,围一块面积为600m2的矩形试验茶园,便于成功后大面积推广.如图所示,茶园一面靠墙,墙长35m,另外三面用69m长的篱笆围成,其中一边开有一扇1m宽的门(不包括篱笆).求这个茶园的长和宽.【解答】解:设茶园垂直于墙的一边长为xm,则另一边的长度为(69+1﹣2x)m,根据题意,得x(69+1﹣2x)=600,整理,得x2﹣35x+300=0,解得x1=15,x2=20,当x=15时,70﹣2x=40>35,不符合题意舍去;当x=20时,70﹣2x=30,符合题意.答:这个茶园的长和宽分别为30m、20m.5.(2021•日照)某药店新进一批桶装消毒液,每桶进价35元,原计划以每桶55元的价格销售,为更好地助力疫情防控,现决定降价销售.已知这种消毒液销售量y(桶)与每桶降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)在这次助力疫情防控活动中,该药店仅获利1760元.这种消毒液每桶实际售价多少元?【解答】解:(1)设y与x之间的函数关系式为:y=kx+b,将点(1,110)、(3,130)代入一次函数关系式得:,解得:,故函数的关系式为:y=10x+100(0<x<20);(2)由题意得:(10x+100)×(55﹣x﹣35)=1760,整理,得x2﹣10x﹣24=0.解得x1=12,x2=﹣2(舍去).所以55﹣x=43.答:这种消毒液每桶实际售价43元.6.(2022•德州)如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.【解答】解:(1)设将绿地的长、宽增加xm,则新的矩形绿地的长为(35+x)m,宽为(15+x)m,根据题意得:(35+x)(15+x)=800,整理得:x2+50x﹣275=0解得:x1=5,x2=﹣55(不符合题意,舍去),∴35+x=35+5=40,15+x=15+5=20.答:新的矩形绿地的长为40m,宽为20m.(2)设将绿地的长、宽增加ym,则新的矩形绿地的长为(35+y)m,宽为(15+y)m,根据题意得:(35+y):(15+y)=5:3,即3(35+y)=5(15+y),解得:y=15,∴(35+y)(15+y)=(35+15)×(15+15)=1500.答:新的矩形绿地面积为1500m2.7.(2022•南岸区自主招生)北京冬奥会期间,某商店购进600个纪念品,每个纪念品的进价为6元,第一周以每个10元的价格售出200个.第二周商店为了适当增加销售量,决定降价销售.根据市场调查,单价每降低1元,可多售出50个(售价不得低于进价).第三周商店把每个纪念品的售价再在第二周售价的基础上降低20%,剩余纪念品全部售完.注:销售利润=销售量×(售价﹣进价)(1)若第二周每个纪念品降价m元,用含m的代数式表示这批纪念品第二周的销售利润;(2)若前两周商店销售这批纪念品的利润为1400元,求第二周每个纪念品的售价;(3)若这批纪念品共获得销售利润1730元,求这批纪念品第三周的销售数量.【解答】解:(1)依题意得:第二周每个纪念品的销售利润为(10﹣m﹣6)=(4﹣m)元,销售量为(200+50m)个,∴这批纪念品第二周的销售利润为(4﹣m)(200+50m)元.(2)依题意得:(10﹣6)×200+(4﹣m)(200+50m)=1400,整理得:m2﹣4=0,解得:m1=2,m2=﹣2(不符合题意,舍去),∴10﹣m=10﹣2=8.答:第二周每个纪念品的售价为8元.(3)依题意得:(10﹣6)×200+(4﹣m)(200+50m)+[(10﹣m)×(1﹣20%)﹣6][600﹣200﹣(200+50m)]=1730,整理得:m2+26m﹣27=0,解得:m1=1,m2=﹣27(不符合题意,舍去),∴600﹣200﹣(200+50m)=600﹣200﹣(200+50×1)=150.答:这批纪念品第三周的销售数量为150个1.(2022秋•大渡口区校级期末)某网店以每件100元的价格购进一批商品,若每件商品的售价为120元,则平均每天可销售30件,为了尽快减少库存,网店决定采取适当的降价措施,经调查发现,每件商品每降价1元,平均每天可多售出5件,每件商品售价为多少元时,该网店日盈利可达到800元?设每件商品售价为x元时,该网店日盈利可达到800元,则可列方程为()A.(20﹣x)(30+5x)=800 B.(20﹣x)(30+x)=800 C.(x﹣100)(630﹣5x)=800 D.(x﹣100)(630﹣x)=800【答案】C【解答】解:设每件商品售价为x元,则每天可销售[30+5(120﹣x)]件,依题意,得:(x﹣100)[30+5(120﹣x)]=800,即(x﹣100)(630﹣5x)=800.故选:C.2.(2022秋•河北区期末)某超市购进一批商品,单价40元.经市场调查,销售定价为52元时,可售出180个,定价每增加1元,销售量减少10个,因受库存的影响,每批次进货个数不得超过180个,超市若将准备获利2000元,则定价为多少元?()A.50 B.60 C.50或60 D.100【答案】B【解答】解:设定价为x元,则每件的销售利润为(x﹣40)元,销售量为180﹣10(x﹣52)=(700﹣10x)个,根据题意得:(x﹣40)(700﹣10x)=2000,整理得:x2﹣110x+3000=0,解得:x1=50,x2=60,当x=50时,700﹣10x=700﹣10×50=200>180,不符合题意,舍去;当x=60时,700﹣10x=700﹣10×60=100<180,符合题意,∴定价为60元.故选:B.3.(2022秋•江岸区校级月考)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽度为xcm(风景画四周的金色纸边宽度相同),则x的值为()A.10 B.8 C.7 D.5【答案】D【解答】解:设金色纸边的宽度为x厘米,则(50+2x)(80+2x)=5400,化简为:x2+65﹣350=0,解得:x1=﹣70(不合题意舍去),x2=5,故选:D.4.(2022秋•甘井子区校级月考)如图,把一块长为40cm,宽为20cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为576cm2,求剪去小正方形的边长.【解答】解:设剪去小正方形的边长为xcm,则该无盖纸盒的底面是长为(40﹣2x)cm,宽为(20﹣2x)cm的矩形,根据题意得:(40﹣2x)(20﹣2x)=576,整理得:x2﹣30x+56=0,解得:x1=2,x2=28(不符合题意,舍去).答:剪去小正方形的边长为2cm.5.(2021秋•平定县期末)如图所示,某景区计划在一个长为36m,宽为20m的矩形空地上修建一个停车场,停车场中修建三块相同的矩形停车区域,它们的面积之和为336m2,三块停车区域之间以及周边留有宽度相等的行车通道,问行车通道的宽度是多少m?【解答】解:设行车通道的宽度是xm,则三块停车区域可合成长为(36﹣4x)m,宽为(20﹣2x)m的矩形,根据题意得:(36﹣4x)(20﹣2x)=336,整理得:x2﹣19x+48=0,解得:x1=3,x2=16(不合题意,舍去).答:行车通道的宽度是3m.6.(2021秋•昌图县期末)如图,要使用长为27米的篱笆,一面利用墙(墙的最大可用长度为12米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为54平方米的花圃,那么AD的长为多少米?(2)能否围成面积为90平方米的花圃?若能,请求出AD的长;若不能,请说明理由.【解答】解:(1)设AD的长为x米,则AB=27﹣3x,根据题意,得x(27﹣3x)=54,整理,得x2﹣9x+18=0,解得x1=3,x2=6∵墙的最大可用长度为12米,∴27﹣3x≤12,∴x≥5,∴x=6,即AD的长为6米;(2)不能围成面积为90平方米的花圃.理由:假设存在符合条件的长方形,设AD的长为y米,于是有(27﹣3y)•y=90,整理得y2﹣9y+30=0,∵Δ=(﹣9)2﹣4×1×30=﹣39<0,∴该方程无实数根,∴不能围成面积为90平方米的花圃.7.(2021秋•平山区校级月考)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润为320元?【解答】解:(1)由题意得:y=80+20×,∴y=﹣40x+880(16≤x≤22);(2)设销售单价降低a元,则每瓶的销售利润为20﹣16﹣a=(4﹣a)元,每天的销售量为80+20×=(80+40a)瓶,依题意,得:(4﹣a)(80+40a)=320,化简,得a2﹣2a=0,解得a1=2,a2=0(舍去),∴20﹣a=18,答:销售单价为18元.8.(2021秋•铁西区校级月考)宾馆有50间房供游客居住,当每间房每天定价为180元时宾馆会住满;当每间房每天的定价加10元时,就会空一间房,如果有游客居住,宾馆还需对居住的每间房每天支出20元的费用.若宾馆每天想获得的利润为10890元,应该将每间房每天定价为多少元?【解答】解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.整理,得x2﹣700x+122500=0,解得x1=x2=350.答:应该将每间房每天定价为350元.9.已知长方形硬纸板ABCD的长BC为40cm,宽CD为30cm,按如图所示剪掉2个小正方形和2个小长方形(即图中阴影部分),剩余部分恰好能折成一个有盖的长方体盒子,设剪掉的小正方形边长为xcm(纸板的厚度忽略不计)(1)EF=cm,GH=cm;(用含x的代数式表示)(2)若折成的长方体盒子底面M的面积为300cm2,求剪掉的小正方形的边长【答案】(1)(1)(30-2x);(20-x)(2)5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年苏州幼儿师范高等专科学校高职单招职业适应性测试历年参考题库含答案解析
- 临时工作人员2024年聘用合同版B版
- 2025年外研版三年级起点九年级科学下册阶段测试试卷
- 2025年湘教版必修1地理上册月考试卷含答案
- 2025年苏教版三年级语文上册阶段测试试卷
- 2025年华师大版九年级物理上册阶段测试试卷含答案
- 2025年人教新起点九年级化学上册月考试卷含答案
- 二零二五年轨道交通安防监控设备合同2篇
- 2025年沪科版七年级化学下册阶段测试试卷含答案
- 2025年人教新课标三年级英语上册月考试卷含答案
- 江苏省苏州市昆山、太仓、常熟、张家港四市2024-2025学年九年级上学期期末阳光测试道法卷(含答案)
- 温湿度记录管理制度模版(3篇)
- wps计算机二级选择押题单选题100道及答案
- 2025的委托拍卖合同范本
- 管理制度医疗器械质量管理制度
- 颅脑损伤的高压氧治疗
- 公司章程模板五篇
- 机械工程师招聘笔试题及解答
- 2023年基础会计学课后习题及参考答案
- 要分手费的分手协议书(标准)
- GB/T 44265-2024电力储能电站钠离子电池技术规范
评论
0/150
提交评论