版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题7.7平行线四大模型专项训练(40道)【苏科版】考卷信息:本套训练卷共40题,题型针对性较高,覆盖面广,选题有深度,涵盖了平行线四大模型的综合问题的所有类型!【模型1“铅笔”模型】1.(2022·湖南·永州市剑桥学校七年级阶段练习)如图所示,l1∥l2,∠1=105°,∠2=140°,则∠3的度数为()A.55° B.60° C.65° D.70°2.(2022·贵州六盘水·七年级期中)如图所示,若AB∥EF,用含α、β、γ的式子表示x,应为(
)A.α+β+γ B.β+γ-α C.180°-α-γ+β D.180°+α+β-γ3.(2022·甘肃·北京师范大学庆阳实验学校七年级期中)如图,如果AB∥CD,那么∠B+∠F+∠E+∠D=___°.4.(2022·全国·七年级专题练习)如图所示,AB//CD,∠ABE与∠CDE的角平分线相较于点F,∠E=80°,求∠BFD5.(2022·全国·七年级专题练习)已知如图所示,AB//CD,∠ABE=3∠DCE,∠DCE=28°,求∠E的度数.6.(2022·全国·七年级)(1)问题情景:如图1,AB//CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明想到一种方法,但是没有解答完:如图2,过P作PE//AB,∴∠APE+∠PAB=180°,∴∠APE=180°-∠PAB=180°-130°=50°∵AB//CD,∴PE//CD.……请你帮助小明完成剩余的解答.(2)问题迁移:请你依据小明的解题思路,解答下面的问题:如图3,AD//BC,当点P在A、B两点之间时,∠ADP=∠α,∠BCP=∠β,则∠CPD,∠α,∠β之间有何数量关系?请说明理由.7.(2022·全国·七年级专题练习)如图1,四边形MNBD为一张长方形纸片.(1)如图2,将长方形纸片剪两刀,剪出三个角(∠BAE、∠AEC、∠ECD(2)如图3,将长方形纸片剪三刀,剪出四个角(∠BAE、∠AEF、∠EFC(3)如图4,将长方形纸片剪四刀,剪出五个角(∠BAE、∠AEF、∠EFG(4)根据前面探索出的规律,将本题按照上述剪法剪n刀,剪出n+1个角,那么这n+1个角的和是____________°.8.(2022·安徽合肥·七年级期末)问题情景:如图1,AB∥CD,∠PAB=140°,∠PCD=135°,求∠APC的度数.(1)丽丽同学看过图形后立即口答出:∠APC=85°,请补全她的推理依据.如图2,过点P作PE∥AB,因为AB∥CD,所以PE∥CD.()所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠PAB=140°,∠PCD=135°,所以∠APE=40°,∠CPE=45°,∠APC=∠APE+∠CPE=85°.问题迁移:(2)如图3,AD∥BC,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α、∠β之间有什么数量关系?请说明理由.(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请直接写出∠CPD与∠α、∠β之间的数量关系.【模型2“猪蹄”模型】9.(2022·全国·七年级)如图所示,直角三角板的60°角压在一组平行线上,AB∥CD,∠ABE=40°,则∠EDC=10.(2022·河南平顶山·八年级期末)如图:(1)如图1,AB∥CD,∠ABE=45°,∠CDE=21°,直接写出(2)如图2,AB∥CD,点E为直线AB,CD间的一点,BF平分∠ABE,DF平分∠CDE,写出∠BED与(3)如图3,AB与CD相交于点G,点E为∠BGD内一点,BF平分∠ABE,DF平分∠CDE,若∠BGD=60°,∠BFD=95°,直接写出∠BED的度数.11.(2022·江苏常州·七年级期中)问题情境:如图①,直线AB∥CD,点E,F分别在直线AB,(1)猜想:若∠1=130°,∠2=150°,试猜想∠P=______°;(2)探究:在图①中探究∠1,∠2,∠P之间的数量关系,并证明你的结论;(3)拓展:将图①变为图②,若∠1+∠2=325°,∠EPG=75°,求∠PGF的度数.12.(2022·山东聊城·七年级阶段练习)已知直线AB//CD,EF是截线,点M在直线AB、CD之间.(1)如图1,连接GM,HM.求证:∠M=∠AGM+∠CHM;(2)如图2,在∠GHC的角平分线上取两点M、Q,使得∠AGM=∠HGQ.试判断∠M与∠GQH之间的数量关系,并说明理由.13.(2022·广东韶关·七年级期中)如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH//MN;(提示:可延长AC交MN于点P进行证明)(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)在(2)的条件下,如图3,BF平分∠DBM,点K在射线BF上,∠KAG=13∠GAC,若∠AKB=∠ACD14.(2022·全国·九年级专题练习)如图所示,已知AB//CD,BE平分∠ABC,DE平分∠ADC,求证:∠E=15.(2022·浙江工业大学附属实验学校七年级期中)已知AB//CD.(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)16.(2022·全国·七年级)如图1,AB//CD,E是AB,CD之间的一点.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并证明你的结论;(2)如图2,若∠BAE,∠CDE的角平分线交于点F,直接写出∠AFD与∠AED之间的数量关系;(3)将图2中的射线DC沿DE翻折交AF于点G得图3,若∠AGD的余角等于2∠E的补角,求∠BAE的大小.17.(2022·广东·高州市第一中学附属实验中学七年级阶段练习)如图1,已知AB∥CD,∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=;(2)请探索∠E与∠F之间满足的数量关系?说明理由;(3)如图2,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数.18.(2022·河南·商丘市第十六中学七年级期中)已知AB∥CD,线段EF分别与AB,CD相交于点E,F.(1)请在横线上填上合适的内容,完成下面的解答:如图1,当点P在线段EF上时,已知∠A=35°,∠C=62°,求∠APC的度数;解:过点P作直线PH∥AB,所以∠A=∠APH,依据是;因为AB∥CD,PH∥AB,所以PH∥CD,依据是;所以∠C=(),所以∠APC=()+()=∠A+∠C=97°.(2)当点P,Q在线段EF上移动时(不包括E,F两点):①如图2,∠APQ+∠PQC=∠A+∠C+180°成立吗?请说明理由;②如图3,∠APM=2∠MPQ,∠CQM=2∠MQP,∠M+∠MPQ+∠PQM=180°,请直接写出∠M,∠A与∠C的数量关系.19.(2022·湖北武汉·七年级期末)如图1,点A在直线MN上,点B在直线ST上,点C在MN,ST之间,且满足∠MAC+∠ACB+∠SBC=360°.(1)证明:MN//(2)如图2,若∠ACB=60°,AD//CB,点E在线段BC上,连接AE,且∠DAE=2∠CBT,试判断∠CAE与(3)如图3,若∠ACB=180°n(n为大于等于2的整数),点E在线段BC上,连接AE,若∠MAE=n∠CBT,则∠CAE:∠CAN=20.(2022·重庆江北·七年级期末)如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且∠EOF=100°.(1)求∠BEO+∠OFD的值;(2)如图2,直线MN分别交∠BEO、∠OFC的角平分线于点M、N,直接写出∠EMN-∠FNM的值;(3)如图3,EG在∠AEO内,∠AEG=m∠OEG;FH在∠DFO内,∠DFH=m∠OFH,直线MN分别交EG、FH分别于点M、N,且∠FMN-∠ENM=50°,直接写出m的值.21.(2022·黑龙江哈尔滨·七年级期末)已知,AB∥CD,点E在CD上,点G,F在AB上,点H在AB,CD之间,连接FE,EH,HG,∠AGH=∠FED,FE⊥HE,垂足为E.(1)如图1,求证:HG⊥HE;(2)如图2,GM平分∠HGB,EM平分∠HED,GM,EM交于点M,求证:∠GHE=2∠GME;(3)如图3,在(2)的条件下,FK平分∠AFE交CD于点K,若∠KFE:∠MGH=13:5,求∠HED的度数.22.(2022·广西柳州·七年级期中)已知直线a∥b,直线EF分别与直线a,b相交于点E,F,点A,B分别在直线a,b上,且在直线EF的左侧,点P是直线EF上一动点(不与点E,F重合),设∠PAE=∠1,∠APB=∠2,∠PBF=(1)如图1,当点P在线段EF上运动时,试说明∠1+∠3=∠2;(2)当点P在线段EF外运动时有两种情况.①如图2写出∠1,∠2,∠3之间的关系并给出证明;②如图3所示,猜想∠1,∠2,∠3之间的关系(不要求证明).【模型3“臭脚”模型】23.(2022·全国·八年级课时练习)(1)已知:如图(a),直线DE∥AB.求证:(2)如图(b),如果点C在AB与ED之外,其他条件不变,那么会有什么结果?你还能就本题作出什么新的猜想?24.(2022·全国·七年级)已知,AE//BD,∠A=∠D.(1)如图1,求证:AB//CD;(2)如图2,作∠BAE的平分线交CD于点F,点G为AB上一点,连接FG,若∠CFG的平分线交线段AG于点H,连接AC,若∠ACE=∠BAC+∠BGM,过点H作HM⊥FH交FG的延长线于点M,且3∠E-5∠AFH=18°,求∠EAF+∠GMH的度数.25.(2022·广东·东莞市光明中学七年级期中)(1)如图(1)AB∥CD,猜想∠BPD与∠B、∠D的关系,说出理由.(2)观察图(2),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,并说明理由.(3)观察图(3)和(4),已知AB∥CD,猜想图中的∠BPD与∠B、∠D的关系,不需要说明理由.26.(2022·浙江台州·七年级期末)如图,已知AD⊥AB于点A,AE∥CD交BC于点E,且EF⊥AB于点F.求证:∠C=∠1+∠2.证明:∵AD⊥AB于点A,EF⊥AB于点F,(已知)∴∠DAB=∠EFB=90°.(垂直的定义)∴AD∥EF,(
)∴__________=∠1(
)∵AE∥CD,(已知)∴∠C=________.(两直线平行,同位角相等)∵∠AEB=∠AEF+∠2,∴∠C=∠1+∠2.(等量代换)27.(2022·广东珠海·七年级期中)已知AM//CN,点B为平面内一点,AB⊥BC于B.(1)如图1,点B在两条平行线外,则∠A与∠C之间的数量关系为______;(2)点B在两条平行线之间,过点B作BD⊥AM于点D.①如图2,说明∠ABD=∠C成立的理由;②如图3,BF平分∠DBC交DM于点F,BE平分∠ABD交DM于点E.若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.28.(2022·湖南·新田县云梯学校七年级阶段练习)①如图1,AB∥CD,则∠A+∠E+∠C=360°;②如图2,AB∥CD,则∠P=∠A-∠C;③如图3,AB∥CD,则∠E=∠A+∠1;④如图4,直线AB∥CD∥EF,点O在直线EF上,则∠α-∠β+∠γ=180°.以上结论正确的个数是(
)A.1个 B.2个 C.3个 D.4个【模型4“铅笔”模型】29.(2022·福建·浦城县教师进修学校八年级期中)如图,直线MA∥NB,∠A=70°,∠B=40°,则∠P=___________度.30.(2022·江苏·景山中学七年级阶段练习)如图,若AB//CD,则∠1+∠3-∠231.(2022·湖北·浠水县兰溪镇兰溪初级中学七年级期中)如图,已知AB//DE,∠ABC=80°,∠CDE=140°,则∠32.(2022·全国·九年级专题练习)如图所示,AB∥CD,∠E=37°,∠C=20°,则∠EAB的度数为__________.33.(2022·全国·七年级)如图,如果AB∥EF,EF∥CD,则∠1,∠2,∠3的关系式__________.34.(2022·全国·九年级专题练习)已知AB//CD,求证:∠B=∠E+∠D35.(2022·浙江·七年级期中)为更好地理清平行线与相关角的关系,小明爸爸为他准备了四根细直木条AB、BC,CD、DE,做成折线ABCDE,如图1,且在折点B、C、D处均可自由转出.(1)如图2,小明将折线调节成∠B=50°,∠C=75°,∠D=25°,判别AB是否平行于ED,并说明理由;(2)如图3,若∠C=∠D=25°,调整线段AB、BC使得AB//CD,求出此时∠B的度数,要求画出图形,并写出计算过程.(3)若∠C=85°,∠D=25°,AB//DE,求出此时∠B的度数,要求画出图形,直接写出度数,不要求计算过程.36.(2022·山西晋中·七年级期中)综合与探究【问题情境】王老师组织同学们开展了探究三角之间数量关系的数学活动(1)如图1,EF//MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和【问题迁移】(2)如图2,射线OM与射线ON交于点O,直线m//n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由.②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.37.(2022·湖北武汉·七年级阶段练习)如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.(1)求证:∠CAB=∠MCA+∠PBA;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 趣味人体成语课程设计
- PBE-AMF-生命科学试剂-MCE
- 华中师范大学《素描2》2021-2022学年第一学期期末试卷
- 食品化学课程设计
- 2024房屋租赁合同关于房屋租赁保险责任协议书
- 旅游安全管理方案
- 2024股份合作合同协议样板
- 航班信息查询课程设计
- 全新风系统空调课程设计
- 2024专卖店加盟合同书
- GB∕T 4162-2022 锻轧钢棒超声检测方法
- 化工异常工况处置卡
- 公司章程示范文本
- 广州版四年级上册Unit9说课
- 血管外科试题合集
- 新版人教版小学数学一年级上册课程纲要
- 形势与政策-论朝鲜半岛局势
- 通达信指标公式源码主力动向
- 潜油泵及潜油泵加油机讲义
- 第8章 腹部检查(讲稿)
- 浅谈深度教学中小学数学U型学习模式
评论
0/150
提交评论