版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考不常考满分当成宝数学10个特色专题精炼(中等难度)专题06新定义型问题1.定义一种新的运算:如果.则有,那么的值是()A. B.5 C. D.2.定义一种运算:,则不等式的解集是()A.或 B.C.或 D.或3.对于任意的有理数a,b,如果满足+=,那么我们称这一对数a,b为“相随数对”,记为(a,b).若(m,n)是“相随数对”,则3m+2[3m+(2n﹣1)]=()A.﹣2 B.﹣1 C.2 D.34.定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是()A.k<且k≠0 B.k C.k且k≠0 D.k≥5.定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是()A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]6.设P(x,y1),Q(x,y2)分别是函数C1,C2图象上的点,当a≤x≤b时,总有﹣1≤y1﹣y2≤1恒成立,则称函数C1,C2在a≤x≤b上是“逼近函数”,a≤x≤b为“逼近区间”.则下列结论:①函数y=x﹣5,y=3x+2在1≤x≤2上是“逼近函数”;②函数y=x﹣5,y=x2﹣4x在3≤x≤4上是“逼近函数”;③0≤x≤1是函数y=x2﹣1,y=2x2﹣x的“逼近区间”;④2≤x≤3是函数y=x﹣5,y=x2﹣4x的“逼近区间”.其中,正确的有()A.②③ B.①④ C.①③ D.②④7.(2022黑龙江大庆)函数叫做高斯函数,其中x为任意实数,表示不超过x的最大整数.定义,则下列说法正确的个数为()①;②;③高斯函数中,当时,x的取值范围是;④函数中,当时,.A.0 B.1 C.2 D.38.(2022湖南常德)我们发现:,,,…,,一般地,对于正整数,,如果满足时,称为一组完美方根数对.如上面是一组完美方根数对.则下面4个结论:①是完美方根数对;②是完美方根数对;③若是完美方根数对,则;④若是完美方根数对,则点在抛物线上.其中正确的结论有()A.1个 B.2个 C.3个 D.4个9.在平面直角坐标系中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在“好点”的是()A. B. C. D.10.定义新运算,对于任意实数a,b满足,其中等式右边是通常的加法、减法、乘法运算,例如,若(k为实数)是关于x的方程,则它的根的情况是()A.有一个实根 B.有两个不相等的实数根 C.有两个相等的实数根 D.没有实数根11.在实数范围内定义运算“☆”:,例如:.如果,则的值是()A. B.1 C.0 D.212.规定:.给出以下四个结论:(1);(2);;(4)其中正确的结论的个数为()A.1个 B.2个 C.3个 D.4个13.定义:a*b=,则方程2*(x+3)=1*(2x)的解为.14.阅读材料:设=(x1,y1),=(x2,y2),如果∥,则x1•y2=x2•y1,根据该材料填空,已知=(4,3),=(8,m),且∥,则m=.15.对于实数,定义运算.若,则_____.16.我们规定:若=(x1,y1),=(x2,y2),则•=x1x2+y1y2.例如=(1,3),=(2,4),则•=1×2+3×4=2+12=14.已知=(x+1,x﹣1),=(x﹣3,4),且﹣2≤x≤3,则•的最大值是.17.定义:[a,b,c]为二次函数y=ax2+bx+c(a≠0)的特征数,下面给出特征数为[m,1﹣m,2﹣m]的二次函数的一些结论:①当m=1时,函数图象的对称轴是y轴;②当m=2时,函数图象过原点;③当m>0时,函数有最小值;④如果m<0,当x>时,y随x的增大而减小.其中所有正确结论的序号是.18.(2022浙江宁波)定义一种新运算:对于任意的非零实数a,b,.若,则x的值为___________.19.若把第n个位置上的数记为xn,则称x1,x2,x3,…,xn有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:y1,y2,y3,…,yn,其中yn是这个数列中第n个位置上的数,n=1,2,…,k且yn=并规定x0=xn,xn+1=x1.如果数列A只有四个数,且x1,x2,x3,x4依次为3,1,2,1,则其“伴生数列”B是.20.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,且b2-4a>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|x2-2x-3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x=1;③当-1≤x≤1或x≥3时,函数值y随x值的增大而增大;④当x=-1或x=3时,函数的最小值是0;⑤当x=1时,函数的最大值是4.其中正确结论的个数是______.21.定义:有一组邻边相等且对角互补的四边形叫做等补四边形.理解:(1)如图1,点A,B,C在⊙O上,∠ABC的平分线交⊙O于点D,连接AD,CD.求证:四边形ABCD是等补四边形;探究:(2)如图2,在等补四边形ABCD中,AB=AD,连接AC,AC是否平分∠BCD?请说明理由.运用:(3)如图3,在等补四边形ABCD中,AB=AD,其外角∠EAD的平分线交CD的延长线于点F,CD=10,AF=5,求DF的长.22.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.(1)已知点A的坐标为(1,0),①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;(2)⊙O的半径为,点M的坐标为(m,3),若在⊙O上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.23.在平面直角坐标系xOy中的点P和图形M,给出如下的定义:若在图形M上存在一点Q,使得P、Q两点间的距离小于或等于1,则称P为图形M的关联点.(1)当⊙O的半径为2时,①在点P1(,0),P2(,),P3(,0)中,⊙O的关联点是.②点P在直线y=﹣x上,若P为⊙O的关联点,求点P的横坐标的取值范围.(2)⊙C的圆心在x轴上,半径为2,直线y=﹣x+1与x轴、y轴交于点A、B.若线段AB上的所有点都是⊙C的关联点,直接写出圆心C的横坐标的取值范围.24.如图,若b是正数,直线l:y=b与y轴交于点A;直线a:y=x﹣b与y轴交于点B;抛物线L:y=﹣x2+bx的顶点为C,且L与x轴右交点为D.(1)若AB=8,求b的值,并求此时L的对称轴与a的交点坐标;(2)当点C在l下方时,求点C与l距离的最大值;(3)设x0≠0,点(x0,y1),(x0,y2),(x0,y3)分别在l,a和L上,且y3是y1,y2的平均数,求点(x0,0)与点D间的距离;(4)在L和a所围成的封闭图形的边界上,把横、纵坐标都是整数的点称为“美点”,分别直接写出b=2019和b=2019.5时“美点”的个数.25.已知平面图形S,点P、Q是S上任意两点,我们把线段PQ的长度的最大值称为平面图形S的“宽距”.例如,正方形的宽距等于它的对角线的长度.(1)写出下列图形的宽距:①半径为1的圆:;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“:;(2)如图2,在平面直角坐标系中,已知点A(﹣1,0)、B(1,0),C是坐标平面内的点,连接AB、BC、CA所形成的图形为S,记S的宽距为d.①若d=2,用直尺和圆规画出点C所在的区域并求它的面积(所在区域用阴影表示);②若点C在⊙M上运动,⊙M的半径为1,圆心M在过点(0,2)且与y轴垂直的直线上.对于⊙M上任意点C,都有5≤d≤8,直接写出圆心M的横坐标x的取值范围.26.定义:有一组对角互余的四边形叫做对余四边形.理解:(1)若四边形是对余四边形,则与的度数之和为______;证明:(2)如图1,是的直径,点在上,,相交于点D.求证:四边形是对余四边形;探究:(3)如图2,在对余四边形中,,,探究线段,和之间有怎样的数量关系?写出猜想,并说明理由.27.阅读感悟有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:已知实数x、y满足①,②,求和的值.本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①②可得,由①②可得.这样的解题思想就是通常所说的“整体思想”.解决问题:(1)已知二元一次方程组,则________,________;(2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?(3)对于实数x、y,定义新运算:,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知,,那么________.28.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数”y=的图象上的一对“T点”,则r=,s=,t=(将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”如果不是,请说明理由;(3)若关于x的“T函数”y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1﹣x1)﹣1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.29.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“雁点”.例如(1,1),(2021,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 起重机轨道智能监测与维护方案
- 铁路建设机械租赁方案
- 建筑项目管理服务合同
- 2024年国际货物海运协议
- 2024年新疆客车从业资格证考试试题题库
- 2024年贺州客运从业资格证模拟考试题
- 2024年锦州小型客运从业资格证考试
- 2024年江苏客运从业资格证试题下载
- 企业竞争战略的临床分析
- 传染病疫情防控志愿者表彰培训总结
- 档案移交方案
- 高中英语外研版(2019)选择性必修第一册各单元主题语境与单元目标
- 人教版数学三年级上册《1-4单元综合复习》试题
- 2024年水利工程行业技能考试-水利部质量检测员笔试历年真题荟萃含答案
- (新版)三级物联网安装调试员技能鉴定考试题库大全-上(单选题汇总)
- 2024年室内装饰设计师(高级工)考试复习题库(含答案)
- 教育培训行业2024年生产与制度改革方案
- 快消行业品牌分析
- 口腔新技术护理课件
- 社交电商的供应链管理和优化
- 题材05乡土小说专题精练-2024年高考语文二轮复习三点突破讲解专练
评论
0/150
提交评论