




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。类型一、倍长中线模型目的:=1\*GB3①构造出一组全等三角形;=2\*GB3②构造出一组平行线。将分散的条件集中到一个三角形中。例1.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,中,若,求边上的中线的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长到点E,使,连接.请根据小明的方法思考:(1)如图2,由已知和作图能得到的理由是.A.SSSB.SASC.AASD.ASA(2)如图2,长的取值范围是.A.B.
C.
D.【感悟】解题时,条件中若出现“中点”、“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论转化到同一个三角形中.【问题解决】(3)如图3,是的中线,交于点E,交于F,且.求证:.例2.(培优)已知和都是等腰直角三角形,,连接,点F为中点.
(1)如图1,求证:;(2)将绕C点旋转到如图2所示的位置,连接,过C点作于M点.①探究和的关系,并说明理由;②连接,求证:F,C,M三点共线.【变式训练1】如图,中,,E是的中点,求证:.【变式训练2】(1)如图1,已知中,AD是中线,求证:;(2)如图2,在中,D,E是BC的三等分点,求证:;(3)如图3,在中,D,E在边BC上,且.求证:.【变式训练3】(1)阅读理解:如图①,在中,若,求边上的中线的取值范围.可以用如下方法:将绕着点D逆时针旋转得到,在中,利用三角形三边的关系即可判断中线的取值范围是_______;(2)问题解决:如图②,在中,D是边上的中点,于点D,交于点E,DF交于点F,连接,求证:;(3)问题拓展:如图③,在四边形中,,,,以C为顶点作一个的角,角的两边分别交于E、F两点,连接EF,探索线段之间的数量关系,并说明理由.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)例1.如图,在五边形中,,平分,.
(1)求证:;(2)若,求的度数.例2.(培优)在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.【变式训练1】如图,为等边三角形,若,则(用含的式子表示).【变式训练2】如图,在四边形中,,点E、F分别在直线、上,且.(1)当点E、F分别在边、上时(如图1),请说明的理由.(2)当点E、F分别在边、延长线上时(如图2),(1)中的结论是否仍然成立?若成立,请说明理由;若不成立,请写出、、之间的数量关系,并说明理由.【变式训练3】阅读下面材料:【原题呈现】如图1,在ABC中,∠A=2∠B,CD平分∠ACB,AD=2.2,AC=3.6,求BC的长.【思考引导】因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到DEC≌DAC,经过推理能使问题得到解决(如图2).【问题解答】(1)参考提示的方法,解答原题呈现中的问题;(2)拓展提升:如图3,已知ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD=2.3,BC=2.求AD的长.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。例1.如图1,,垂足分别为D,E.(1)若,求的长.(2)在其它条件不变的前提下,将所在直线变换到的外部(如图2),请你猜想三者之间的数量关系,并证明你的结论;(3)如图3,将(1)中的条件改为:在中,,D,C,E三点在同一条直线上,并且有,其中α为任意钝角,那么(2)中你的猜想是否还成立?若成立,请证明;若不成立,请说明理由.例2.在正方形中,点在射线上(不与点,重合),连接,,过点作,并截取(点,在同侧),连接.(1)如图1,点在边上.①依题意补全图1;②用等式表示线段,,之间的数量关系,并证明;(2)如图2,点在边的延长线上,其他条件均不变,直接写出线段,,之间的数量关系.【变式训练1】通过对数学模型“K字”模型或“一线三等角”模型的研究学习,解决下列问题:[模型呈现]如图1,,,过点B作于点C,过点D作于点E.求证:.[模型应用]如图2,且,且,请按照图中所标注的数据,计算图中实线所围成的图形的面积为________________.[深入探究]如图3,,,,连接,,且于点F,与直线交于点G.若,,则的面积为_____________.【变式训练2】(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在中,,,直线l经过点A,直线l,直线l,垂足分别为点D,E.求证:.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在中,,D,A,E三点都在直线l上,并且有,其中为任意锐角或钝角.请问结论是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过的边AB,AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若,则______.类型四、手拉手模型例1.【问题发现】(1)如图1,和均为等边三角形,点B,D,E在同一直线上,连接,容易发现:①的度数为;②线段、之间的数量关系为;【类比探究】(2)如图2,和均为等腰直角三角形,,点B,D,E在同一直线上,连接,试判断的度数以及线段、、之间的数量关系,并说明理由;【问题解决】(3)如图3,,,,,则的值为.例2.(培优)如图1,在中,,,点D、E分别在边AB,上,,连接DC,点M,P,N分别为DE,DC,BC的中点.(1)观察猜想:图中,线段PM与PN的数量关系是______,位置关系是______;(2)探究证明:把绕点A逆时针方向旋转到图2的位置,连接,,,判断的形状,并说明理由;(3)拓展延伸:把绕点A在平面内自由旋转,若,,请直接写出面积的最大值.【变式训练1】如图,在中,,,点O是中点,,将绕点O旋转,的两边分别与射线、交于点D、E.(1)当转动至如图一所示的位置时,连接,求证:;(2)当转动至如图二所示的位置时,线段、、之间有怎样的数量关系?请说明理由.【变式训练2】已知在中,,过点B引一条射线,D是上一点【问题解决】(1)如图1,若,射线在内部,,求证:,小明同学展示的做法是:在上取一点E使得,通过已知的条件,从而求得的度数,请你帮助小明写出证明过程;【类比探究】(2)如图2,已知.①当射线在内,求的度数②当射线在下方,如图3所示,请问的度数会变化吗?若不变,请说明理由,若改变,请求出的度数;类型五、半角模型例1.已知:边长为4的正方形ABCD,∠EAF的两边分别与射线CB、DC相交于点E、F,且∠EAF=45°,连接EF.求证:EF=BE+DF.思路分析:(1)如图1,∵正方形ABCD中,AB=AD,∠BAD=∠B=∠ADC=90°,∴把△ABE绕点A逆时针旋转90°至△ADE',则F、D、E'在一条直线上,∠E'AF=度,……根据定理,可证:△AEF≌△AE'F.∴EF=BE+DF.类比探究:(2)如图2,当点E在线段CB的延长线上,探究EF、BE、DF之间存在的数量关系,并写出证明过程;拓展应用:(3)如图3,在△ABC中,AB=AC,D、E在BC上,∠BAC=2∠DAE.若S△ABC=14,S△ADE=6,求线段BD、DE、EC围成的三角形的面积.例2.(培优)如图,,,,,.(1)求的度数;(2)以E为圆心,以长为半径作弧;以F为圆心,以长为半径作弧,两弧交于点G,试探索的形状?是锐角三形,直角三角形还是钝角三角形?请说明理由.【变式训练1】已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:+=.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.【变式训练2】(1)如图,在正方形中,、分别是,上的点,且.直接写出、、之间的数量关系;(2)如图,在四边形中,,,、分别是,上的点,且,求证:;(3)如图,在四边形中,,,延长到点,延长到点,使得,则结论是否仍然成立?若成立,请证明;不成立,请写出它们的数量关系并证明.类型六、旋转模型例.如图,在中,,点D在内,,,点E在外,.(1)的度数为_______________;(2)小华说是等腰三角形,小明说是等边三角形,___________的说法更准确,并说明理由;(3)连接,若,求的长.例2.(培优)已知点C为线段上一点,分别以为边在线段AB同侧作和,且.,,直线与交于点F.
(1)如图1,可得___________;若,则___________.(2)如图2,若,则___________.(用含a的式子表示)(3)设,将图2中的绕点C顺时针旋转任意角度(交点F至少在中的一条线段上),如图3.试探究与a的数量关系,并予以说明.【变式训练1】在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【变式训练2】如图,等边中,分别交、于点、.(1)求证:是等边三角形;(2)将绕点顺时针旋转(),设直线与直线相交于点.①如图,当时,判断的度数是否为定值,若是,求出该定值;若不是,说明理由;②若,,当,,三点共线时,求的长.课后训练1.已知:如图,在中,,、分别为、上的点,且、交于点.若、为的角平分线.(1)求的度数;(2)若,,求的长.2.在与中,,,.
(1)如图1,若点D,B,C在同一直线上,连接,,则与的关系为________.(2)如果将图1中的绕点B在平面内顺时针旋转到如图2的位置,那么请你判断与的关系,并说明理由(3)如图3,若,,连接,分别取,,的中点M,P,N,连接,,,将绕点B在平面内顺时针旋转一周,请直接写出旋转过程中的面积最大值和最小值.3.问题背景:如图1,在四边形ABCD中,,,E、F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G,使DG=BE,连接AG,先证明,再证明,可得出结论,他的结论应是______.实际应用:如图2,在新修的小区中,有块四边形绿化ABCD,四周修有步行小径,且AB=AD,∠B+∠D=180°,在小径BC,CD上各修一凉亭E,F,在凉亭E与F之间有一池塘,不能直接到达,经测量得,BE=10米,DF=15米,试求两凉亭之间的距离EF.4.【探索发现】如图①,四边形ABCD是正方形,M,N分别在边CD、BC上,且,我们把这种模型称为“半角模型”,在解决“半角模型”问题时,旋转是一种常用的方法.如图①,将绕点A顺时针旋转,点D与点B重合,得到,连接AM、AN、MN.(1)试判断DM,BN,MN之间的数量关系,并写出证明过程.(2)如图②,点M、N分别在正方形AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 备考心态无人机驾驶员考试试题及答案
- 深度篮球裁判员等级考试试题及答案
- 2024年模具设计师考试的答题技巧与试题答案
- 创建高分的模具设计师考试试题及答案
- 足球裁判员岗位职责试题及答案
- 裁判员如何处理场上误解与分歧试题及答案
- 2025年中国凸板纸市场调查研究报告
- 让模具设计师资格认证考试复习不再枯燥的策略试题及答案
- 农作物种子繁育员职业资格考试新动态试题及答案
- 互动学习的篮球裁判员试题及答案
- 摄影学习通超星期末考试答案章节答案2024年
- 探究膜分离技术在水处理中的应用
- 洋流课件2024-2025学年高中地理人教版(2019)选择性必修一
- 2024-2025学年中职数学拓展模块一 (下册)高教版(2021·十四五)教学设计合集
- 电梯维保工程施工组织设计方案
- 2024-2030年中国消防行业市场发展分析及发展趋势与投资前景研究报告
- 外研版(2019) 必修第三册 Unit 2 Making a Difference教案
- 医院科研成果及知识产权管理规范
- DB32T-公路桥梁水下结构检测评定标准
- 高职药学专业《药物制剂技术》说课课件
- 低碳环保管理制度
评论
0/150
提交评论