2023年中考数学二轮专题训练-几何探究压轴题_第1页
2023年中考数学二轮专题训练-几何探究压轴题_第2页
2023年中考数学二轮专题训练-几何探究压轴题_第3页
2023年中考数学二轮专题训练-几何探究压轴题_第4页
2023年中考数学二轮专题训练-几何探究压轴题_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

试卷第=page22页,共=sectionpages1010页2023年中考数学二轮专题训练:几何探究压轴题1.已知是的中线,点是线段上一点,过点作的平行线,过点作的平行线,两平行线交于点,连结.【方法感知】如图①,当点与点重合时,易证:.(不需证明)【探究应用】如图②,当点与点不重合时,求证:四边形是平行四边形.【拓展延伸】如图③,记与的交点为,的延长线与的交点为,且为的中点.(1)______(2)若,时,则的长为______.2.已知:如图,正方形与正方形.(1)如图①,求证:;(2)如图②,求的值;(3)如图③,分别取的中点,试探究:与的关系,并说明理由.3.在中,,点是射线上的一动点(不与点、重合),以为一边在的右侧作,使,,连接.(1)如图1,当点在线段上,且时,那么________度;(2)设,.①如图2,当点D在线段上,时,请你探究与之间的数量关系,并证明你的结论;②如图3,当点D在线段的延长线上,时,请将图3补充完整;写出此时与之间的数量关系,并说明理由.4.已知,为等边三角形,点在边上.【基本图形】如图1,以为一边作等边三角形,连结.可得(不需证明).【迁移运用】如图2,点是边上一点,以为一边作等边三角.求证:.【类比探究】如图3,点是边的延长线上一点,以为一边作等边三角.试探究线段,,三条线段之间存在怎样的数量关系,请写出你的结论并说明理由.5.综合与实践二轮复习中,刘老师以“最值问题”为专题引导同学们进行复习探究.问题模型:等腰三角形,,,(1)探究:如图,点为等腰三角形底边上一个动点,连接,则的最小值为______,判断依据为______;(2)探究:在探究的结论下,继续探究,作的平分线交于点,点,分别为,上一个动点,求的最小值;(3)探究:在探究的结论下,继续探究,点为线段上一个动点,连接,将顺时针旋转,得到线段,连接,求线段的最小值.6.问题提出(1)如图1,在中,,,将其折叠,使点B落在边上的处,折痕经过点C,交于点D,则的度数为___________;问题探究(2)如图2,正方形的一条对称轴l交于点H,点E在l上,连接.若正方形的边长为2,,求线段的长.问题解决(3)如图3,有一块三角形空地经测量,米,.现要过点C边修建一条小路,满足,点A关于的对称点为D,连接交于点E.若米,请利用所学知识,求的长.7.已知是等腰直角三角形,,(1)如图1,是等腰直角三角形,点D在的延长线上,,连接,求证:;(2)如图2,点F是斜边上动点,点G是延长线上动点,总有,探究的数量关系,并说明理由;(3)如图3,点H是一点,连接FH,若,,,直接写出的面积为____________(用m,n表示).8.课本再现如图1,在等边中,为边上一点,为上一点,且,连接与相交于点.(1)与的数量关系是______,与构成的锐角夹角的度数是______.深入探究(2)将图1中的延长至点,使,连接,,如图2所示.求证:平分.(第一问的结论,本问可直接使用)迁移应用(3)如图3,在等腰中,,,分别是边,上的点,与相交于点.若,且,求的值.9.四边形中,,M为上一点,连、.(1)平分,,①如图1,求证:;②如图2,若平分,交于F,交于N,,;(2)在(1)的条件下求的值;(3)如图3,当,时,试探究与的数量关系,证明你的结论.10.综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为E,F为的中点,连接,,试猜想与的数量关系,并加以证明.(1)独立思考:请解答老师提出的问题;(2)实践探究:希望小组受此问题的启发,将沿着(F为的中点)所在直线折叠,如图②,点C的对应点为,连接并延长交于点G,请判断与的数量关系,并加以证明.(3)问题解决:智慧小组突发奇想,将沿过点B的直线折叠,如图③,点A的对应点为,使于点H,折痕交于点M,连接,交于点N.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.11.问题提出:已知矩形,点为上的一点,,交于点.将绕点顺时针旋转得到,则与有怎样的数量关系.【问题探究】探究一:如图,已知正方形,点为上的一点,,交于点.(1)如图1,直接写出的值;(2)将绕点顺时针旋转到如图所示的位置,连接、,猜想与的数量关系,并证明你的结论;探究二:如图,已知矩形,点为上的一点,,交于点.如图3,若四边形为矩形,,将绕点顺时针旋转得到、的对应点分别为、点,连接、,则的值是否随着的变化而变化.若变化,请说明变化情况;若不变,请求出的值.【一般规律】如图3,若四边形为矩形,,其它条件都不变,将绕点顺时针旋转得到,连接,,请直接写出与的数量关系.12.定义:有一个角是直角的平行四边形叫做矩形.(1)根据定义判矩形已知:如图1,在平行四边形中,是它的两条对角线,.求证:平行四边形是矩形.(2)动手操作有发现如图2,在矩形中,是的中点,将沿折叠后得到,点在矩形内部,延长交于点.猜想线段与有何数量关系?并证明你的结论.(3)类比探究到一般如图3,将(2)中的矩形改为平行四边形,其它条件不变,(2)中的结论是否仍然成立,请说明理由.(4)解决问题巧应用如图4,保持(2)中的条件不变,若点是的中点,且,请直接写出矩形的面积.13.在中,,,点P是平面内不与点A,C重合的任意一点,连接,将线段绕点P逆时针旋转α得到线段,连接,,.(1)观察猜想如图①,当时,的值是_______,直线与直线相交所成的较小角的度数是________.(2)类比探究如图②,当时,请写出的值及直线与直线相交所成的较小角的度数,并就图②的情形说明理由.14.(1)(问题背景)如图1,在等边中,点M是边上一点,连接,以为边作等边(A,M,N按逆时针方向排列),连接,求证:(2)(变式探究)如图2,已知,指出图中的另外一对相似三角形并进行证明;(3)(拓展应用)如图3,在和中,,,点D在边上,求的值.15.(1)【操作发现】如图1,四边形都是矩形,,,小明将矩形绕点C顺时针转,如图2所示.①若的值不变,请求出的值,若变化,请说明理由.②在旋转过程中,当点B、E、F在同一条直线上时,画出图形并求出的长度.(2)【类比探究】如图3,中,,,G为中点,D为平面内一个动点,且,将线段绕点D逆时针旋转得到,则四边形面积的最大值为.(直接写出结果)16.如图1,在矩形中,,动点P从B出发,以每秒1个单位的速度,沿射线方向移动,作关于直线的对称,设点P的运动时间为.(1)若.①如图2,当点落在上时,求证:,②是否存在异于图2的时刻,使得是直角三角形?若存在,请直接写出所有符合题意的t的值?若不存在,请说明理由.(2)当P点不与C点重合时,若直线与直线相交于点M,且当时存在某一时刻有结论成立,试探究:对于的任意时刻,结论“”是否总是成立?请说明理由.17.在正方形中,是边上一点(点不与点、重合),连结.感知:如图①,过点作交于点.求证.探究:如图②,取的中点,过点作交于点,交于点.(1)求证:.(2)连结,若,求的长.应用如图③,取的中点,连结.过点作交于点,连结、.若,求四边形的面积.18.点在四边形的对角线上,直角三角板绕直角顶点旋转,其边、分别交、边于点、.操作发现:如图①,若四边形是正方形,当时,可知四边形是正方形,显然.当与不垂直时,判断确定、之间的数量关系;______.(直接写出结论即可)类比探究:如图②,若四边形是矩形,试说明.拓展应用:如图③,改变四边形、的形状,其他条件不变,且满足,,,时,求的值.答案第=page1212页,共=sectionpages22页参考答案:1.【拓展延伸】(1);(2)2.(2)(3),3.(1)90(2)①,证明见解析;②,5.(1);点到直线的距离垂线段最短(2)(3)6.(1);(2);(3)米7.(2)(3)8.(1);60°(3)39.(1)(2)(3)10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论