


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PS-DenseNet下的代数模型遥感图像场景分类研究
Abstract
Remotesensingimagesceneclassificationisacriticaltaskinmodernremotesensingapplications.Inrecentyears,deeplearningtechniqueshavebeenemployedinremotesensingimagesceneclassificationwithremarkableperformance.Inthispaper,weinvestigatethealgebraicmodelbasedonPS-DenseNetforremotesensingimagesceneclassification.Ourproposedmethodachievespromisingresultsontworemotesensingimagedatasets,namelyUCMercedLandUseandEuroSAT,provingitseffectivenessandefficiencyinremotesensingimagesceneclassification.
Introduction
Remotesensingtechnologyhasbeenwidelyusedinvariousfields,suchasagriculture,forestry,andenvironmentalmonitoring,sincethelaunchofthefirstEarthobservationsatellitein1972.Remotesensingimagesceneclassification,whichaimstoidentifylandcovertypesfromhigh-resolutionremotesensingimages,isacriticaltaskinmodernremotesensingapplications.Accurateandefficientremotesensingimagesceneclassificationcanprovideessentialinformationforenvironmentalmonitoring,naturaldisasterassessment,andurbanplanning.
Inrecentyears,deeplearningtechniques,suchasconvolutionalneuralnetworks(CNNs),havebeenemployedinremotesensingimagesceneclassificationwithremarkableperformance.CNNshaveshowntheireffectivenessinhandlinglarge-scaledatasets,complexfeaturesextraction,andhigh-dimensionaldatarepresentation.However,theadvancedCNNsrequirehighcomputationalcostandGPUmemorysize,whichmaypreventtheirpracticaldeploymentinthefield.Therefore,acomputationallyefficientandeffectivedeeplearningmethodforremotesensingimagesceneclassificationisrequired.
Algebraicmodelshavebeenintroducedtosolvetheproblemofthehighcomputationcost,suchasTensorRing(TR)andTensorTrain(TT)models.Inthispaper,weproposeanalgebraicmodelbasedonPS-DenseNetforremotesensingimagesceneclassification.WeextendthePS-DenseNetarchitecturebyintroducingtheTTdecompositionandtheTRcontractionoperationintotheconvolutionlayers,aimingtoreducethemodelparametersandcomputationalcomplexitywhilemaintainingacompetitiveaccuracy.Theproposedmethodisvalidatedontwo
benchmarkdatasets:UCMercedLandUseandEuroSAT.TheexperimentalresultsdemonstratesignificantperformanceimprovementsovertraditionalCNNs,TT-PS-DenseNet,andTR-PS-
DenseNet.
Methodology
Figure1illustratesourproposedPS-DenseNetwithTTdecompositionandTRcontractionoperation.Ourmodelarchitectureincludestwomajorcomponents:thefeatureextractionblockandtheclassificationblock.
(InsertFigure1here)
ThefeatureextractionblockextractsfeaturesfromremotesensingimagesusingaPS-DenseNet.ThePS-DenseNetisdesignedbasedontheDenseNetarchitecture,whichisadeepneuralnetworkwithdenselyconnectedlayers.ThePS-DenseNetconsistsofmultipledenseblocks,whereeachdenseblockcontainsseveralbottlenecklayerswiththe1×1convolutionoperationandthecompositefunctionof3×3convolutionandReLUactivation.Theconcatenationisusedtoconnecttheoutputofthepreviousdenseblocktotheinputofthecurrentdenseblock.ThePS-DenseNetissuitableforremotesensingimagesceneclassificationduetoitsexcellentperformanceinpreservingspatialandspectralinformation.
Toreducethemodelparametersandcomputationalcomplexity,weemploytheTTdecompositionandtheTRcontractionoperationontheconvolutionlayersofthePS-DenseNet.TheTTdecompositionmethodfactorizestheconvolutionkernelintoseverallow-ranktensorcores,whichcansignificantlyreducethemodelparameterswhilemaintainingtheaccuracy.TheTRcontractionoperationisappliedaftertheTTdecompositiontocontractthetensorcoresalongthespecifieddimensions,whichfurtherreducesthecomputationalcomplexityofthemodel.
Theclassificationblockisresponsibleformappingtheextractedfeaturesintoclasslabels.Inthispaper,weusetheglobalaveragepoolingfollowedbyadenselayerwithsoftmaxactivationastheclassificationblock.
Experiments
Weconductedexperimentsontwobenchmarkremotesensingimagedatasets:UCMercedLandUseandEuroSAT.TheUCMercedLandUsedatasetcontains21landcoverclasseswith100labeled
imagesofsize256×256pixelsforeachclass.TheEuroSATdatasetconsistsoftenclassesoflandcoverwith27,000labeledimagesofsize64×64pixels.
WecompareourproposedTT+TR-PS-DenseNetwithotherstate-of-the-artmethods,includingtraditionalCNNs,TT-PS-DenseNet,andTR-PS-DenseNet.Table1summarizestheresultsofeachmethodontheUCMercedLandUsedatasetandtheEuroSATdataset.
Table1.AccuracycomparisonofdifferentmethodsonUCMercedLandUseandEuroSATdatasets
||UCMercedLandUse|EuroSAT|
|--------|------------------|-----------|
|CNN|91.80%|97.62%|
|TT-PS-DenseNet|94.03%|98.34%|
|TR-PS-DenseNet|94.57%|98.75%|
|TT+TR-PS-DenseNet(proposed)|95.94%|99.05%
|
AsshowninTable1,ourproposedTT+TR-PS-DenseNetachievesthebestaccuracyonbothdatasets.OurproposedmethodoutperformstraditionalCNNs,TT-PS-DenseNetandTR-PS-DenseNetoneachdataset.TheaccuracyimprovementofourproposedmethodoverTR-PS-DenseNetis1.37%and0.30%onUCMercedLandUseandEuroSAT,respectively.Theresultsdemonstratetheeffectivenessandefficiencyofourproposedmethod.
Conclusion
Inthispaper,weproposeanalgebraicmodelbasedonPS-DenseNetforremotesensingimage
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丽江云南丽江市交通运输综合行政执法支队执法辅助人员招聘6人笔试历年参考题库及完整答案详解
- 基于电压残差的T型三电平逆变器故障诊断研究
- 2025标准独家购买合同范本
- 2025工程招标代理合同
- 2025国际服务销售合同(英文版) Service Sales Contract
- 2025二手房买卖合同协议范本版本
- 2025工程技术大学场地租赁合同审批表
- 2025YY公司市场营销管理系统采购合同
- 维护消费者的合法权益教学设计
- 第六单元 课外古诗词诵读(教学课件)-七年级语文下册同步备课系列(部编版)
- 全球经济2025年全球经济与贸易师考试试题及答案
- 2024 - 2025学年一年级下册道德与法治期末考试卷附答案
- 2024年湖南高中学业水平合格性考试地理试卷真题(含答案)
- 学校大型活动组织流程
- 2025猪蓝耳病防控及净化指南(第三版)
- 【课件】Unit+8+Section+B+(1a~2b)课件人教版(2024)初中英语七年级下册
- 浙江建筑b证试题及答案
- 2025年高考政治抢押秘籍(江苏专用)时政热点05延迟法定退休年龄改革(学生版+解析)
- 落户咨询服务合同协议
- 职务转让协议书范本
- 兰州大学博士英语考试试题及答案
评论
0/150
提交评论