新高考数学二轮复习导数培优专题18 构造函数法解决导数问题(含解析)_第1页
新高考数学二轮复习导数培优专题18 构造函数法解决导数问题(含解析)_第2页
新高考数学二轮复习导数培优专题18 构造函数法解决导数问题(含解析)_第3页
新高考数学二轮复习导数培优专题18 构造函数法解决导数问题(含解析)_第4页
新高考数学二轮复习导数培优专题18 构造函数法解决导数问题(含解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题18构造函数法解决导数问题1.以抽象函数为背景、题设条件或所求结论中具有“f(x)±g(x),f(x)g(x),eq\f(fx,gx)”等特征式、旨在考查导数运算法则的逆向、变形应用能力的客观题,是高考试卷中的一位“常客”,常以压轴题的形式出现,解答这类问题的有效策略是将前述式子的外形结构特征与导数运算法则结合起来,合理构造出相关的可导函数,然后利用该函数的性质解决问题.2.(1)当题设条件中存在或通过变形出现特征式“f′(x)±g′(x)”时,不妨联想、逆用“f′(x)±g′(x)=[f(x)±g(x)]′”.构造可导函数y=f(x)±g(x),然后利用该函数的性质巧妙地解决问题.(2)当题设条件中存在或通过变形出现特征式“f′(x)g(x)+f(x)g′(x)”时,可联想、逆用“f′(x)g(x)+f(x)g′(x)=[f(x)g(x)]′”,构造可导函数y=f(x)g(x),然后利用该函数的性质巧妙地解决问题.(3)当题设条件中存在或通过变形出现特征式“f′(x)g(x)-f(x)g′(x)”时,可联想、逆用“eq\f(f′xgx-fxg′x,[gx]2)=eq\b\lc\[\rc\](\a\vs4\al\co1(\f(fx,gx)))′”,构造可导函数y=eq\f(fx,gx),再利用该函数的性质巧妙地解决问题.3.构造函数解决导数问题常用模型(1)条件:f′(x)>a(a≠0):构造函数:h(x)=f(x)-ax.(2)条件:f′(x)±g′(x)>0:构造函数:h(x)=f(x)±g(x).(3)条件:f′(x)+f(x)>0:构造函数:h(x)=exf(x).(4)条件:f′(x)-f(x)>0:构造函数:h(x)=eq\f(fx,ex).(5)条件:xf′(x)+f(x)>0:构造函数:h(x)=xf(x).(6)条件:xf′(x)-f(x)>0:构造函数:h(x)=eq\f(fx,x).题型一构造y=f(x)±g(x)型可导函数1.设奇函数f(x)是R上的可导函数,当x>0时有f′(x)+cosx<0,则当x≤0时,有()A.f(x)+sinx≥f(0)B.f(x)+sinx≤f(0)C.f(x)-sinx≥f(0) D.f(x)-sinx≤f(0)解析:观察条件中“f′(x)+cosx”与选项中的式子“f(x)+sinx”,发现二者之间是导函数与原函数之间的关系,于是不妨令F(x)=f(x)+sinx,因为当x>0时,f′(x)+cosx<0,即F′(x)<0,所以F(x)在(0,+∞)上单调递减,又F(-x)=f(-x)+sin(-x)=-[f(x)+sinx]=-F(x),所以F(x)是R上的奇函数,且F(x)在(-∞,0)上单调递减,F(0)=0,并且当x≤0时有F(x)≥F(0),即f(x)+sinx≥f(0)+sin0=f(0),故选A.2.设定义在R上的函数f(x)满足f(0)=-1,其导函数f′(x)满足f′(x)>k>1,则下列结论一定错误的是()A.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k)))<eq\f(1,k)B.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k)))>eq\f(1,k-1)C.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))<eq\f(1,k-1) D.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))>eq\f(1,k-1)解析:根据条件式f′(x)>k得f′(x)-k>0,可以构造F(x)=f(x)-kx,因为F′(x)=f′(x)-k>0,所以F(x)在R上单调递增.又因为k>1,所以eq\f(1,k-1)>0,从而Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))>F(0),即feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))-eq\f(k,k-1)>-1,移项、整理得feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,k-1)))>eq\f(1,k-1),因此选项C是错误的,故选C.3.已知定义域为R的函数f(x)的图象经过点(1,1),且对于任意x∈R,都有f′(x)+2>0,则不等式f(log2|3x-1|)<3-logeq\r(2)|3x-1|的解集为()A.(-∞,0)∪(0,1)B.(0,+∞)C.(-1,0)∪(0,3) D.(-∞,1)解析:根据条件中“f′(x)+2”的特征,可以构造F(x)=f(x)+2x,则F′(x)=f′(x)+2>0,故F(x)在定义域内单调递增,由f(1)=1,得F(1)=f(1)+2=3,因为由f(log2|3x-1|)<3-logeq\r(2)|3x-1|可化为f(log2|3x-1|)+2log2|3x-1|<3,令t=log2|3x-1|,则f(t)+2t<3.即F(t)<F(1),所以t<1.即log2|3x-1|<1,从而0<|3x-1|<2,解得x<1且x≠0,故选A.4.设定义在R上的函数f(x)满足f(1)=2,f′(x)<1,则不等式f(x2)>x2+1的解集为________.解析:由条件式f′(x)<1得f′(x)-1<0,待解不等式f(x2)>x2+1可化为f(x2)-x2-1>0,可以构造F(x)=f(x)-x-1,由于F′(x)=f′(x)-1<0,所以F(x)在R上单调递减.又因为F(x2)=f(x2)-x2-1>0=2-12-1=f(12)-12-1=F(12),所以x2<12,解得-1<x<1,故不等式f(x2)>x2+1的解集为{x|-1<x<1}.5.定义在R上的函数f(x),满足f(1)=1,且对任意x∈R都有f′(x)<eq\f(1,2),则不等式f(lgx)>eq\f(lgx+1,2)的解集为__________.解析:由题意构造函数g(x)=f(x)-eq\f(1,2)x,则g′(x)=f′(x)-eq\f(1,2)<0,所以g(x)在定义域内是减函数.因为f(1)=1,所以g(1)=f(1)-eq\f(1,2)=eq\f(1,2),由f(lgx)>eq\f(lgx+1,2),得f(lgx)-eq\f(1,2)lgx>eq\f(1,2).即g(lgx)=f(lgx)-eq\f(1,2)lgx>eq\f(1,2)=g(1),所以lgx<1,解得0<x<10.所以原不等式的解集为(0,10).题型二构造f(x)·g(x)型可导函数1.设函数f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(3)=0,则不等式f(x)g(x)>0的解集是()A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3)解析:利用构造条件中“f′(x)g(x)+f(x)g′(x)”与待解不等式中“f(x)g(x)”两个代数式之间的关系,可构造函数F(x)=f(x)g(x),由题意可知,当x<0时,F′(x)>0,所以F(x)在(-∞,0)上单调递增.又因为f(x),g(x)分别是定义在R上的奇函数和偶函数,所以F(x)是定义在R上的奇函数,从而F(x)在(0,+∞)上单调递增,而F(3)=f(3)g(3)=0,所以F(-3)=-F(3),结合图象可知不等式f(x)g(x)>0⇔F(x)>0的解集为(-3,0)∪(3,+∞),故选A.2.设y=f(x)是(0,+∞)上的可导函数,f(1)=2,(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立.若曲线f(x)在点(1,2)处的切线为y=g(x),且g(a)=2018,则a等于()A.-501B.-502C.-503 D.-504解析:由“2f(x)+xf′(x)”联想到“2xf(x)+x2f′(x)”,可构造F(x)=x2f(x)(x>0).由(x-1)[2f(x)+xf′(x)]>0(x≠1)可知,当x>1时,2f(x)+xf′(x)>0,则F′(x)=2xf(x)+x2f′(x)>0,故F(x)在(1,+∞)上单调递增;当0<x<1时,2f(x)+xf′(x)<0,则F′(x)=2xf(x)+x2f′(x)<0,故F(x)在(0,1)上单调递减,所以x=1为极值点,则F′(1)=2×1×f(1)+12f′(1)=2f(1)+f′(1)=0.由f(1)=2可得f′(1)=-4,曲线f(x)在点(1,2)处的切线为y-2=-4(x-1),即y=6-4x,故g(x)=6-4x,g(a)=6-4a=2018,解得a=-503,故选C.3.设定义在R上的函数f(x)满足f′(x)+f(x)=3x2e-x,且f(0)=0,则下列结论正确的是()A.f(x)在R上单调递减B.f(x)在R上单调递增C.f(x)在R上有最大值D.f(x)在R上有最小值解析:根据条件中“f′(x)+f(x)”的特征,可以构造F(x)=exf(x),则有F′(x)=ex[f′(x)+f(x)]=ex·3x2e-x=3x2,故F(x)=x3+c(c为常数),所以f(x)=eq\f(x3+c,ex),又f(0)=0,所以c=0,f(x)=eq\f(x3,ex).因为f′(x)=eq\f(3x2-x3,ex),易知f(x)在区间(-∞,3]上单调递增,在[3,+∞)上单调递减,f(x)max=f(3)=eq\f(27,e3),无最小值,故选C.4.已知f(x)是定义在R上的增函数,其导函数为f′(x),且满足eq\f(fx,f′x)+x<1,则下列结论正确的是()A.对于任意x∈R,f(x)<0B.对于任意x∈R,f(x)>0C.当且仅当x∈(-∞,1)时,f(x)<0D.当且仅当x∈(1,+∞)时,f(x)>0解析:因为函数f(x)在R上单调递增,所以f′(x)≥0,又因为eq\f(fx,f′x)+x<1,则f′(x)≠0,综合可知f′(x)>0.又因为eq\f(fx,f′x)+x<1,则f(x)+xf′(x)<f′(x),即f(x)+(x-1)f′(x)<0,根据“f(x)+(x-1)f′(x)”的特征,构造函数F(x)=(x-1)f(x),则F′(x)<0,故函数F(x)在R上单调递减,又F(1)=(1-1)f(1)=0,所以当x>1时,x-1>0,F(x)<0,故f(x)<0.又因为f(x)是定义在R上的增函数,所以当x≤1时,f(x)<0,因此对于任意x∈R,f(x)<0,故选A.5.若定义在R上的函数f(x)满足f′(x)+f(x)>2,f(0)=5,则不等式f(x)<eq\f(3,ex)+2的解集为________.解析:因为f′(x)+f(x)>2,所以f′(x)+f(x)-2>0,不妨构造函数F(x)=exf(x)-2ex.因为F′(x)=ex[f′(x)+f(x)-2]>0,所以F(x)在R上单调递增.因为f(x)<eq\f(3,ex)+2,所以exf(x)-2ex<3,即F(x)<3,又因为F(0)=e0f(0)-2e0=3,所以F(x)<F(0),则x<0,故不等式f(x)<eq\f(3,ex)+2的解集为(-∞,0).6.设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,则下列不等式在R上恒成立的是()A.f(x)>0B.f(x)<0C.f(x)>xD.f(x)<x解析:令g(x)=x2f(x)-eq\f(1,4)x4,则g′(x)=2xf(x)+x2f′(x)-x3=x[2f(x)+xf′(x)-x2].当x>0时,g′(x)>0,∴g(x)>g(0),即x2f(x)-eq\f(1,4)x4>0,从而f(x)>eq\f(1,4)x2>0;当x<0时,g′(x)<0,∴g(x)>g(0),即x2f(x)-eq\f(1,4)x4>0,从而f(x)>eq\f(1,4)x2>0;当x=0时,由题意可得2f(0)>0,∴f(0)>0.综上可知,f(x)>0.7.已知定义在R上的函数f(x)满足f(x)+2f′(x)>0恒成立,且f(2)=eq\f(1,e)(e为自然对数的底数),则不等式exf(x)-eSKIPIF1<0>0的解集为________.解析:由f(x)+2f′(x)>0得2eq\b\lc\[\rc\](\a\vs4\al\co1(\f(1,2)fx+f′x))>0,可构造函数h(x)=eSKIPIF1<0f(x),则h′(x)=eq\f(1,2)eSKIPIF1<0[f(x)+2f′(x)]>0,所以函数h(x)=eSKIPIF1<0f(x)在R上单调递增,且h(2)=ef(2)=1.不等式exf(x)-eSKIPIF1<0>0等价于eSKIPIF1<0f(x)>1,即h(x)>h(2)⇒x>2,所以不等式exf(x)-eSKIPIF1<0>0的解集为(2,+∞).题型三构造eq\f(fx,gx)型可导函数1.设f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是()A.(-∞,-1)∪(0,1) B.(-1,0)∪(1,+∞)C.(-∞,-1)∪(-1,0) D.(0,1)∪(1,+∞)解析:令g(x)=eq\f(fx,x),则g′(x)=eq\f(xf′x-fx,x2).由题意知,当x>0时,g′(x)<0,∴g(x)在(0,+∞)上是减函数.∵f(x)是奇函数,f(-1)=0,∴f(1)=-f(-1)=0,∴g(1)=f(1)=0,∴当x∈(0,1)时,g(x)>0,从而f(x)>0;当x∈(1,+∞)时,g(x)<0,从而f(x)<0.又∵f(x)是奇函数,∴当x∈(-∞,-1)时,f(x)>0;当x∈(-1,0)时,f(x)<0.综上,所求x的取值范围是(-∞,-1)∪(0,1).2.已知f(x)为定义在(0,+∞)上的可导函数,且f(x)>xf′(x),则不等式x2feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))-f(x)<0的解集为________.解析:因为f(x)>xf′(x),所以xf′(x)-f(x)<0,根据“xf′(x)-f(x)”的特征,可以构造函数F(x)=eq\f(fx,x),则F′(x)=eq\f(xf′x-fx,x2)<0,故F(x)在(0,+∞)上单调递减.又因为x>0,所以x2feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))-f(x)<0可化为xfeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))-eq\f(fx,x)<0,即eq\f(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x))),\f(1,x))-eq\f(fx,x)<0,即eq\f(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x))),\f(1,x))<eq\f(fx,x),即Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))<F(x),所以eq\b\lc\{\rc\(\a\vs4\al\co1(x>0,,\f(1,x)>x,))解得0<x<1,故不等式x2feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))-f(x)<0的解集为(0,1).3.已知f(x)为R上的可导函数,且∀x∈R,均有f(x)>f′(x),则有()A.e2019f(-2019)<f(0),f(2019)>e2019f(0)B.e2019f(-2019)<f(0),f(2019)<e2019f(0)C.e2019f(-2019)>f(0),f(2019)>e2019f(0)D.e2019f(-2019)>f(0),f(2019)<e2019f(0)解析:构造函数h(x)=eq\f(fx,ex),则h′(x)=eq\f(f′x-fx,ex)<0,即h(x)在R上单调递减,故h(-2019)>h(0),即eq\f(f-2019,e-2019)>eq\f(f0,e0)⇒e2019f(-2019)>f(0);同理,h(2019)<h(0),即f(2019)<e2019f(0),故选D.4.已知定义在R上函数f(x),g(x)满足:对任意x∈R,都有f(x)>0,g(x)>0,且f′(x)g(x)-f(x)g′(x)<0.若a,b∈R+且a≠b,则有()A.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))>f(eq\r(ab))g(eq\r(ab))B.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))<f(eq\r(ab))g(eq\r(ab))C.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))g(eq\r(ab))>geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))f(eq\r(ab))D.feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))g(eq\r(ab))<geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))f(eq\r(ab))解析:根据条件中“f′(x)g(x)-f(x)g′(x)”的特征,可以构造函数F(x)=eq\f(fx,gx),因为f′(x)g(x)-f(x)g′(x)<0,所以F′(x)=eq\f(f′xgx-fxg′x,[gx]2)<0,F(x)在R上单调递减.又因为eq\f(a+b,2)>eq\r(ab),所以Feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))<F(eq\r(ab)),即eq\f(f\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2))),g\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2))))<eq\f(f\r(ab),g\r(ab)),所以feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))g(eq\r(ab))<geq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))·f(eq\r(ab)),故选D.5.设f′(x)是函数f(x)(x∈R)的导函数,且满足xf′(x)-2f(x)>0,若在△ABC中,角C为钝角,则()A.f(sinA)·sin2B>f(sinB)·sin2AB.f(sinA)·sin2B<f(sinB)·sin2AC.f(cosA)·sin2B>f(sinB)·cos2AD.f(cosA)·sin2B<f(sinB)·cos2A解析:根据“xf′(x)-2f(x)”的特征,可以构造函数F(x)=eq\f(fx,x2),则有F′(x)=eq\f(x2f′x-2xfx,x4)=eq\f(x[xf′x-2fx],x4),所以当x>0时,F′(x)>0,F(x)在(0,+∞)上单调递增.因为eq\f(π,2)<C<π,所以0<A+B<eq\f(π,2),0<A<eq\f(π,2)-B,则有1>cosA>coseq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)-B))=sinB>0,所以F(cosA)>F(sinB),即eq\f(fcosA,cos2A)>eq\f(fsinB,sin2B),f(cosA)·sin2B>f(sinB)·cos2A,故选C.6.定义在R上的函数f(x)满足:f′(x)>f(x)恒成立,若x1<x2,则ex1f(x2)与ex2f(x1)的大小关系为()A.ex11f(x2)>ex2f(x1)B.ex1f(x2)<ex2f(x1)C.ex1f(x2)=ex2f(x1)D.ex1f(x2)与ex2f(x1)的大小关系不确定解析:设g(x)=eq\f(fx,ex),则g′(x)=eq\f(f′xex-fxex,ex2)=eq\f(f′x-fx,ex),由题意知g′(x)>0,所以g(x)单调递增,当x1<x2时,g(x1)<g(x2),即eq\f(fx1,ex1)<eq\f(fx2,ex2),所以ex1f(x2)>ex2f(x1).专项突破练构造函数法解决导数问题一、单选题1.已知SKIPIF1<0是定义在R上的偶函数,SKIPIF1<0是SKIPIF1<0的导函数,当SKIPIF1<0时,SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,因为SKIPIF1<0是定义在R上的偶函数,所以SKIPIF1<0,则SKIPIF1<0,所以函数SKIPIF1<0也是偶函数,SKIPIF1<0,因为当SKIPIF1<0时,SKIPIF1<0,所以当SKIPIF1<0时,SKIPIF1<0,所以函数SKIPIF1<0在SKIPIF1<0上递增,不等式SKIPIF1<0即为不等式SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以SKIPIF1<0的解集是SKIPIF1<0.故选:B.2.定义在SKIPIF1<0上的函数SKIPIF1<0的图象是连续不断的一条曲线,且SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,则不等式SKIPIF1<0的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】设SKIPIF1<0,根据题意,SKIPIF1<0,所以SKIPIF1<0为R上的奇函数,当SKIPIF1<0时,SKIPIF1<0,因为SKIPIF1<0在R上的图象连续不断,所以SKIPIF1<0为R上的减函数,SKIPIF1<0可化为SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故不等式的解集为SKIPIF1<0.故选:D.3.SKIPIF1<0是定义在R上的函数,SKIPIF1<0是SKIPIF1<0的导函数,已知SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0,则不等式SKIPIF1<0的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】令函数SKIPIF1<0,则SKIPIF1<0.因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0在R上单调递增.又SKIPIF1<0,而SKIPIF1<0等价于SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0.故选:C.4.已知函数SKIPIF1<0是定义在SKIPIF1<0上的奇函数,SKIPIF1<0,当SKIPIF1<0时,有SKIPIF1<0成立,则不等式SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】SKIPIF1<0成立设SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0时SKIPIF1<0是增函数,当SKIPIF1<0时,SKIPIF1<0,此时SKIPIF1<0;SKIPIF1<0时,SKIPIF1<0,此时SKIPIF1<0.又SKIPIF1<0是奇函数,所以SKIPIF1<0时,SKIPIF1<0;SKIPIF1<0时SKIPIF1<0则不等式SKIPIF1<0等价为SKIPIF1<0或SKIPIF1<0,可得SKIPIF1<0或SKIPIF1<0,则不等式SKIPIF1<0的解集是SKIPIF1<0,故选:SKIPIF1<0.5.已知函数SKIPIF1<0的图像关于直线SKIPIF1<0对称,且当SKIPIF1<0,SKIPIF1<0成立,若SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,则(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】函数SKIPIF1<0的图像关于直线SKIPIF1<0对称,可知函数SKIPIF1<0的图像关于直线SKIPIF1<0对称,即SKIPIF1<0为偶函数,构造SKIPIF1<0,当SKIPIF1<0,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上单调递减,且易知SKIPIF1<0为奇函数,故SKIPIF1<0在SKIPIF1<0上单调递减,由SKIPIF1<0,所以SKIPIF1<0.故选:D.6.已知函数SKIPIF1<0的定义域为SKIPIF1<0,且满足SKIPIF1<0(SKIPIF1<0是SKIPIF1<0的导函数),则不等式SKIPIF1<0的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0,即SKIPIF1<0在SKIPIF1<0上递增,又SKIPIF1<0,则SKIPIF1<0等价于SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,解得SKIPIF1<0,原不等式解集为SKIPIF1<0.故选:C7.已知f(x)为定义在R上的可导函数,SKIPIF1<0为其导函数,且SKIPIF1<0恒成立,其中e是自然对数的底数,则(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】设函数SKIPIF1<0,可得SKIPIF1<0,因为SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,可得SKIPIF1<0单调递增,则SKIPIF1<0,即SKIPIF1<0.故选:B.8.已知函数SKIPIF1<0的定义域为SKIPIF1<0,其导函数为SKIPIF1<0,若SKIPIF1<0,则下列式子一定成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0,又不等式SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0单调递增,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故选:B.9.已知函数SKIPIF1<0为SKIPIF1<0上的可导函数,其导函数为SKIPIF1<0,且满足SKIPIF1<0恒成立,SKIPIF1<0,则不等式SKIPIF1<0的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】构造函数SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0为R上的单调减函数,不等式SKIPIF1<0,即SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,故选:SKIPIF1<010.已知定义在SKIPIF1<0上的函数SKIPIF1<0,SKIPIF1<0为其导函数,满足①SKIPIF1<0,②当SKIPIF1<0时,SKIPIF1<0.若不等式SKIPIF1<0有实数解,则其解集为(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】构造函数SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0递增,由于SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0是偶函数,所以当SKIPIF1<0时,SKIPIF1<0递减.不等式SKIPIF1<0等价于:SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,两边平方并化简得SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0,所以不等式SKIPIF1<0的解集为SKIPIF1<0.故选:D11.已知定义域为SKIPIF1<0的函数SKIPIF1<0满足SKIPIF1<0,且SKIPIF1<0,e为自然对数的底数,若关于x的不等式SKIPIF1<0恒成立,则实数a的取值范围为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由SKIPIF1<0,得SKIPIF1<0,设SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,从而有SKIPIF1<0.又因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上单调递增,在SKIPIF1<0上单调递减,所以SKIPIF1<0.因为不等式SKIPIF1<0恒成立,所以SKIPIF1<0,即SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0.故选:B.12.已知函数SKIPIF1<0为定义域在R上的偶函数,且当SKIPIF1<0时,函数SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的解集是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】由题可知,当SKIPIF1<0时,SKIPIF1<0.令SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0.可知函数SKIPIF1<0在SKIPIF1<0上单调递减﹐在SKIPIF1<0上单调递增.又SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以函数SKIPIF1<0在SKIPIF1<0上单调递减,SKIPIF1<0,可化为SKIPIF1<0,又函数SKIPIF1<0关于SKIPIF1<0对称,故SKIPIF1<0或SKIPIF1<0,所以不等式的解集为SKIPIF1<0.故选:A13.已知函数SKIPIF1<0,若SKIPIF1<0且SKIPIF1<0,则有(

)A.SKIPIF1<0可能是奇函数,也可能是偶函数 B.SKIPIF1<0C.SKIPIF1<0时,SKIPIF1<0 D.SKIPIF1<0【解析】若SKIPIF1<0是奇函数,则SKIPIF1<0,又因为SKIPIF1<0,与SKIPIF1<0矛盾,所有函数SKIPIF1<0不可能时奇函数,故A错误;令SKIPIF1<0,则SKIPIF1<0,因为SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,所以函数SKIPIF1<0为增函数,所以SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故B错误;因为SKIPIF1<0,所以SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,故C错误;有SKIPIF1<0,即SKIPIF1<0,故D正确.故选:D.14.定义在R上的函数SKIPIF1<0满足SKIPIF1<0,且SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的导函数,则不等式SKIPIF1<0(其中e为自然对数的底数)的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】设SKIPIF1<0,可得SKIPIF1<0.因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在定义域上单调递增,又因为SKIPIF1<0,即SKIPIF1<0,又由SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,所以不等式的解集为SKIPIF1<0.故选:C.15.设函数SKIPIF1<0是定义在SKIPIF1<0上的函数SKIPIF1<0的导函数,有SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的大小关系是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】设SKIPIF1<0,则SKIPIF1<0,又因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上单调递增,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故选:C.16.已知定义在SKIPIF1<0上的函数SKIPIF1<0满足:SKIPIF1<0,且SKIPIF1<0,则SKIPIF1<0的解集为(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】设SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0为SKIPIF1<0上的增函数,而SKIPIF1<0可化为SKIPIF1<0即SKIPIF1<0,故SKIPIF1<0即SKIPIF1<0,所以不等式SKIPIF1<0的解集为SKIPIF1<0,故选:A.二、多选题17.设SKIPIF1<0,SKIPIF1<0是定义在R上的恒大于零的可导函数,且满足SKIPIF1<0,则当SKIPIF1<0时,有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】令SKIPIF1<0,则SKIPIF1<0.由SKIPIF1<0,得SKIPIF1<0,所以函数SKIPIF1<0在R上单调递增.当SKIPIF1<0时,有SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0是定义在R上的恒大于零的可导函数,所以SKIPIF1<0,SKIPIF1<0.故选:BC18.已知定义在R上的函数SKIPIF1<0图像连续,满足SKIPIF1<0,且SKIPIF1<0时,SKIPIF1<0恒成立,则不等式SKIPIF1<0中的x可以是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【解析】由SKIPIF1<0整理得SKIPIF1<0,设SKIPIF1<0,则有SKIPIF1<0,所以SKIPIF1<0是偶函数,因为SKIPIF1<0时,SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0单调递减,又SKIPIF1<0是偶函数,所以SKIPIF1<0在SKIPIF1<0单调递增,又不等式SKIPIF1<0等价于SKIPIF1<0SKIPIF1<0SKIPIF1<0,即SKIPIF1<0,根据SKIPIF1<0的单调性和奇偶性可得SKIPIF1<0,解得SKIPIF1<0,故选:ABC19.定义在SKIPIF1<0上的函数SKIPIF1<0的导函数为SKIPIF1<0,且SKIPIF1<0恒成立,则必有(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【解析】设函数SKIPIF1<0,SKIPIF1<0,因为SKIPIF1<0则SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上单调递减,从而SKIPIF1<0,即SKIPIF1<0,则必有SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.又SKIPIF1<0在SKIPIF1<0上单调递减,所以x>0时,SKIPIF1<0,所以x>0时,SKIPIF1<0,又SKIPIF1<0,所以SKIPIF1<0.故选:ACD.20.已知SKIPIF1<0是SKIPIF1<0上的可导函数,且SKIPIF1<0对于任意SKIPIF1<0恒成立,则下列不等关系正确的是(

)A.SKIPIF1<0,SKIPIF1<0 B.SKIPIF1<0,SKIPIF1<0C.SKIPIF1<0,SKIPIF1<0 D.SKIPIF1<0,SKIPIF1<0【解析】设SKIPIF1<0,所以SKIPIF1<0,因为SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上是减函数,所以SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,故选:AC.三、填空题21.已知SKIPIF1<0是SKIPIF1<0上的奇函数,SKIPIF1<0是在SKIPIF1<0上无零点的偶函数,SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,则使得SKIPIF1<0的解集是________【解析】令SKIPIF1<0,则SKIPIF1<0,当SKIPIF1<0时,SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上单调递减,又SKIPIF1<0是奇函数,SKIPIF1<0是偶函数,故SKIPIF1<0是奇函数,SKIPIF1<0在SKIPIF1<0上单调递减,又SKIPIF1<0,可得SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上小于0,由SKIPIF1<0,得SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0.故答案为:SKIPIF1<0.22.已知函数SKIPIF1<0是SKIPIF1<0上的奇函数,SKIPIF1<0,对SKIPIF1<0,SKIPIF1<0成立,则SKIPIF1<0的解集为_________.【解析】设SKIPIF1<0,则对SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0在SKIPIF1<0上为单调递增函数,∵函数SKIPIF1<0是SKIPIF1<0上的奇函数,∴SKIPIF1<0,∴SKIPIF1<0,∴SKIPIF1<0为偶函数,∴SKIPIF1<0在SKIPIF1<0上为单调递减函数,又∵SKIPIF1<0,∴SKIPIF1<0,由已知得SKIPIF1<0,所以当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0;当SKIPIF1<0时,SKIPIF1<0;若SKIPIF1<0,则SKIPIF1<0;若SKIPIF1<0,则SKIPIF1<0或SKIPIF1<0,解得SKIPIF1<0或SKIPIF1<0或SKIPIF1<0;则SKIPIF1<0的解集为SKIPIF1<0.23.已知函数SKIPIF1<0的导函数为SKIPIF1<0,且对任意SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,SKIPIF1<0,则SKIPIF1<0的取值范围是___________.【解析】构造函数SKIPIF1<0,则SKIPIF1<0,故函数SKIPIF1<0在SKIPIF1<0上单调递减,由已知可得SKIPIF1<0,由SKIPIF1<0可得SKIPIF1<0,可得SKIPIF1<0.故答案为:SKIPIF1<0.24.定义在SKIPIF1<0上的函数满足SKIPIF1<0,且对任意SKIPIF1<0都有SKIPIF1<0,则不等式SKIPIF1<0的解集为__________.【解析】构造函数SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0在SKIPIF1<0上递减,由SKIPIF1<0,得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0,即等式SKIPIF1<0的解集为SKIPIF1<0.25.若SKIPIF1<0为定义在SKIPIF1<0上的连续不断的函数,满足SKIPIF1<0,且当SKIPIF1<0时,SKIPIF1<0.若SKIPIF1<0,则SKIPIF1<0的取值范围___________.【解析】SKIPIF1<0,SKIPIF1<0,设SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0为奇函数,又SKIPIF1<0,SKIPIF1<0在SKIPIF1<0上是减函数,从而在SKIPIF1<0上是减函数,又SKIPIF1<0,等价于SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故答案为:SKIPIF1<0.26.已知函数SKIPIF1<0是定义在SKIPIF1<0的奇函数,当SKIPIF1<0时,SKIPIF1<0,则不等式SKIPIF1<0的解集为___________.【解析】函数SKIPIF1<0是定义在SKIPIF1<0的奇函数,构造函数SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0为偶函数,当SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0递减,当SKIPIF1<0时,SKIPIF1<0递增.SKIPIF1<0,SKIPIF1<0,当SKIPIF1<0,即SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.当SKIPIF1<0,即SKIPIF1<0时,SKIPIF1<0,SKIPIF1<0.综上所述,不等式SKIPIF1<0的解集为SKIPIF1<0.故答案为:SKIPIF1<027.已知定义在SKIPIF1<0的函数SKIPIF1<0满足SKIPIF1<0,则不等式SKIPIF1<0的解集为___________.【解析】令SKIPIF1<0,则SKIPIF1<0,所以函数SKIPIF1<0在SKIPIF1<0上单调递减,又由SKIPIF1<0得SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0,解得SKIPIF1<0,故答案为:SKIPIF1<0.28.若定义在SKIPIF1<0上的函数SKIPIF1<0满足SKIPIF1<0,SKIPIF1<0,则不等式SKIPIF1<0的解集为________________.【解析】构造SKIPIF1<0,则SKIPIF1<0,函数SKIPIF1<0满足SKIPIF1<0,则SKIPIF1<0,故SKIPIF1<0在SKIPIF1<0上单调递增.又∵SKIPIF1<0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论