2022年中考数学几何变形题归类辅导专题08相似三角形性质和判定的应用(解析版)_第1页
2022年中考数学几何变形题归类辅导专题08相似三角形性质和判定的应用(解析版)_第2页
2022年中考数学几何变形题归类辅导专题08相似三角形性质和判定的应用(解析版)_第3页
2022年中考数学几何变形题归类辅导专题08相似三角形性质和判定的应用(解析版)_第4页
2022年中考数学几何变形题归类辅导专题08相似三角形性质和判定的应用(解析版)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

【中考数学几何变形题归类辅导】专题8:相似三角形性质和判定的应用【典例引领】例:如图,在矩形ABCD中,AB=3,BC=5,E是AD上的一个动点.(1)如图1,连接BD,O是对角线BD的中点,连接OE.当OE=DE时,求AE的长;(2)如图2,连接BE,EC,过点E作EF⊥EC交AB于点F,连接CF,与BE交于点G.当BE平分∠ABC时,求BG的长;(3)如图3,连接EC,点H在CD上,将矩形ABCD沿直线EH折叠,折叠后点D落在EC上的点D'处,过点D′作D′N⊥AD于点N,与EH交于点M,且AE=1.①求SΔED②连接BE,△D'MH与△CBE是否相似?请说明理由.【答案】(1)AE=3310;(2)BG=526;(3)①54【分析】(1)先求出BD,进而求出OD=OB=OA,再判断出△ODE∽△ADO,即可得出结论;(2)先判断出△AEF≌△DCE,进而求出BF=1,再判断出△CHG∽△CBF,进而求出BK=GK=56(3)①先求出EC=5,再求出D'C=1,根据勾股定理求出DH=43,CH=53,再判断出△EMN∽△EHD,得出MNHD=EMEH,△ED'M∽△②先判断出∠MD'H=∠NED',进而判断出∠MD'H=∠ECB,即可得出D'MCB【解答】(1)如图1,连接OA,在矩形ABCD中,CD=AB=3,AD=BC=5,∠BAD=90°在Rt△ABD中,根据勾股定理得,BD=34,∵O是BD中点,∴OD=OB=OA=342∴∠OAD=∠ODA,∵OE=DE,∴∠EOD=∠ODE,∴∠EOD=∠ODE=∠OAD,∴△ODE∽△ADO,∴DOAD∴DO2=DE•DA,∴设AE=x,∴DE=5﹣x,∴(342)2=5(5﹣x∴x=3310即:AE=3310(2)如图2,在矩形ABCD中,∵BE平分∠ABC,∴∠ABE=∠EBC=45°,∵AD∥BC,∴∠AEB=∠EBC,∴∠ABE=∠AEB,∴AE=AB=3,∴AE=CD=3,∵EF⊥EC,∴∠FEC=90°,∴∠AEF+∠CED=90°,∵∠A=90°,∴∠AEF+∠AFE=90°,∴∠CED=∠AFE,∵∠D=∠A=90°,∴△AEF≌△DCE,∴AF=DE=2,∴BF=AB﹣AF=1,过点G作GK⊥BC于K,∴∠EBC=∠BGK=45°,∴BK=GK,∠ABC=∠GKC=90°,∵∠KCG=∠BCF,∴△CHG∽△CBF,∴GKFB设BK=GK=y,∴CK=5﹣y,∴y=56∴BK=GK=56在Rt△GKB中,BG=52(3)①在矩形ABCD中,∠D=90°,∵AE=1,AD=5,∴DE=4,∵DC=3,∴EC=5,由折叠知,ED'=ED=4,D'H=DH,∠ED'H=∠D=90°,∴D'C=1,设D'H=DH=z,∴HC=3﹣z,根据勾股定理得,(3﹣z)2=1+z2,∴z=43∴DH=43,CH=5∵D'N⊥AD,∴∠AND'=∠D=90°,∴D'N∥DC,∴△EMN∽△EHD,∴MNHD∵D'N∥DC,∴∠ED'M=∠ECH,∵∠MED'=∠HEC,∴△ED'M∽△ECH,∴D'MCH∴MNHD∴D'MMN∴S△ED'M②相似,理由:由折叠知,∠EHD'=∠EHD,∠ED'H=∠D=90°,∴∠MD'H+∠ED'N=90°,∵∠END'=90°,∴∠ED'N+∠NED'=90°,∴∠MD'H=∠NED',∵D'N∥DC,∴∠EHD=∠D'MH,∴∠EHD'=∠D'MH,∴D'M=D'H,∵AD∥BC,∴∠NED'=∠ECB,∴∠MD'H=∠ECB,∵CE=CB=5,∴D'M∴△D'MH∽△CBE.【强化训练】1.如图1,以□ABCD的较短边CD为一边作菱形CDEF,使点F落在边AD上,连接BE,交AF于点G.(1)猜想BG与EG的数量关系.并说明理由;(2)延长DE,BA交于点H,其他条件不变,①如图2,若∠ADC=60°,求DGBH②如图3,若∠ADC=α(0°<α<90°),直接写出DGBH的值.(用含α【答案】(1)BG=EG,理由见解析;(2)12;(3)cos【分析】(1)BG=EG,根据已知条件易证△BAG≌△EFG,根据全等三角形的对应边相等即可得结论;(2)①方法一:过点G作GM∥BH,交DH于点M,证明ΔGME∽ΔBHE,即可得GMBH=GEBE=12,再证明ΔMGD是等边三角形,可得DG=MG,由此可得DGBH=MGBH=12;方法二:延长ED,BC交于点M,证明ΔHBM为等边三角形,再证明ΔEDG∽ΔEMB,即可得结论;②如图3,连接EC交DF【解答】(1)BG=EG,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵四边形CDEF是菱形,∴CD∥EF,CD=EF.∴AB∥EF,AB=EF.∴∠ABG=∠FEG.又∵∠AGB=∠FGE,∴ΔABG≌ΔFEG(AAS∴BG=EG.(2)方法1:过点G作GM∥BH,交DH于点M,∴∠EMG=∠EHA.∵∠GEM=∠BEH,∴ΔGME∽ΔBHE.∴GMBH由(1)结论知BG=EG.∴EG=1∴GMBH∵四边形CDEF为菱形,∴∠ADC=∠EDF=60°.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠CDF=∠HAD=60°.∵GM∥AH,∴∠MGD=∠HAD=60°.∴∠GMD=180°-即∠GMD=∠MGD=∠MGD=60°.∴ΔMGD是等边三角形。∴DG=MG.∴DGBH方法2:延长ED,BC交于点M,∵四边形CDEF为菱形,∴∠EDF=∠CDF=60°.∵四边形ABCD为平形四边形,∴∠ABC=∠ADC=60°,AD∥BC.∴∠EDF=∠M=60°.∠H=180°-即∠HBM=∠M=∠H=60°.∴ΔHBM为等边三角形.∴HB=MB.∵AD∥BC,∴∠EGD=∠EBM,∠EDG=∠M.∴ΔEDG∽ΔEMB,∴DGMB由(1)结论知BG=EG∴EG=1∴DGMB∵HB=MB,∴DGBH(3)cosα.如图3,连接EC交DF于O∵四边形CFED是菱形,∴EC⊥AD,FD=2FO,设FG=a,AB=b,则FG=a,EF=ED=CD=b,Rt△EFO中,cosα=OEEF∴OF=bcosα,∴DG=a+2bcosα,过H作HM⊥AD于M,∵∠ADC=∠HAD=∠ADH=α,∴AH=HD,∴AM=12AD=12(2a+2bcosα)Rt△AHM中,cosα=AMAH∴AH=a+bcos∴DGBH=a+2bcos2.已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是(用含α的代数式表示)(3)若△ABC是等边三角形,AB=33,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.【答案】(1)①证明见解析;②∠BDE=90°;(2)α或180°﹣α;(3)CF的长为32或43【分析】(1)①根据SAS证明即可;②想办法证明∠ADE+∠ADB=90°即可;(2)分两种情形讨论求解即可,①如图2中,当点E在AN的延长线上时,②如图3中,当点E在NA的延长线上时,(3)分两种情形求解即可,①如图4中,当BN=13BC=3时,作AK⊥BC于K,解直角三角形即可.②如图5中,当CN=13BC=3时,作AK⊥BC于K,DH⊥BC于H【解答】(1)①如图1中,∵CA=CB,BN=AM,∴CB﹣BN=CA﹣AM,即CN=CM,∵∠ACN=∠BCM,∴△BCM≌△CAN;②如图1中,∵△BCM≌△ACN,∴∠MBC=∠NAC,∵EA=ED,∴∠EAD=∠EDA,∵AG∥BC,∴∠GAC=∠ACB=90°,∠ADB=∠DBC,∴∠ADB=∠NAC,∴∠ADB+∠EDA=∠NAC+∠EAD,∵∠ADB+∠EDA=180°﹣90°=90°,∴∠BDE=90°;(2)如图2中,当点E在AN的延长线上时,易证:∠CBM=∠ADB=∠CAN,∠ACB=∠CAD,∵EA=ED,∴∠EAD=∠EDA,∴∠CAN+∠CAD=∠BDE+∠ADB,∴∠BDE=∠ACB=α;如图3中,当点E在NA的延长线上时,易证:∠1+∠2=∠CAN+∠DAC,∵∠2=∠ADM=∠CBD=∠CAN,∴∠1=∠CAD=∠ACB=α,∴∠BDE=180°﹣α,综上所述,∠BDE=α或180°﹣α,故答案为:α或180°﹣α;(3)如图4中,当BN=13BC=3时,作AK⊥BC于K∵AD∥BC,∴ADBC∴AD=332,AC=33,易证△ADC是直角三角形,则四边形ADCK是矩形,△AKN≌△∴CF=NK=BK﹣BN=332﹣3=如图5中,当CN=13BC=3时,作AK⊥BC于K,DH⊥BC于H∵AD∥BC,∴ADBC∴AD=63,易证△ACD是直角三角形,由△ACK∽△CDH,可得CH=3AK=93由△AKN≌△DHF,可得KN=FH=32∴CF=CH﹣FH=43.综上所述,CF的长为32或433.如图,△ABC中,∠BAC为钝角,∠B=45°,点P是边BC延长线上一点,以点C为顶点,CP为边,在射线BP下方作∠PCF=∠B.(1)在射线CF上取点E,连接AE交线段BC于点D.①如图1,若AD=DE,请直接写出线段AB与CE的数量关系和位置关系;②如图2,若AD=DE,判断线段AB与CE的数量关系和位置关系,并说明理由;(2)如图3,反向延长射线CF,交射线BA于点C′,将∠PCF沿CC′方向平移,使顶点C落在点C′处,记平移后的∠PCF为∠P′C′F′,将∠P′C′F′绕点C′顺时针旋转角α(0°<α<45°),C′F′交线段BC于点M,C′P′交射线BP于点N,请直接写出线段BM,MN与CN之间的数量关系.【答案】(1)①AB=CE,AB⊥CE;②AB=CE;(2)MN2=BM2+CN2.【分析】试题分析:(1)①结论:AB=CE.如图1中,作EH∥BA交BP于H.只要证明△BDA≌△HDE,EC=EH即可解决问题;②结论:AB=CE.如图2中,作EH∥BA交BP于H.由△ABD∽△EHD,可得=,推出AB=EH,再证明EC=EH,即可解决问题;(2)结论:MN2=BM2+CN2.首先说明△BCC′是等腰直角三角形,将△C′BM绕点C′顺时针旋转90°得到△C′CG,连接GN.只要证明△C′MN≌△C′GN,推出MN=GN,在Rt△GCN中,根据GN2=CG2+CN2,即可证明.【解答】(1)①结论:AB=CE,AB⊥CE,理由:如图1中,作EH∥BA交BP于H,∵AB∥EH,∴∠B=∠DHE,∵AD=DE,∠BDA=∠EDH,∴△BDA≌△HDE,∴AB=EH,∵∠PCF=∠B=∠CHE,∴EC=EH,∴AB=EH,∠ECH=∠EHC=45°,∴∠CEH=90°,∴CE⊥EH,∵AB∥EH,∴AB⊥CE;②结论:AB=CE.理由:如图2中,作EH∥BA交BP于H,∵BA∥EH,∴△ABD∽△EHD,∴=,∴AB=EH,∵∠PCF=∠B=∠CHE,∴EC=EH,∴AB=EH;(2)结论:MN2=BM2+CN2,理由:如图3中,∵∠B=∠PCF=∠BCC′=45°,∴△BCC′是等腰直角三角形,将△C′BM绕点C′顺时针旋转90°得到△C′CG,连接GN,∵∠C′CG=∠B=45°,∴∠GCB=∠C′CG+∠C′CB=90°,∴∠GCN=90°,∵∠MC′G=90°,∠MC′N=45°,∴∠NC′M=∠NC′G,∵C′M=C′G,C′N=C′N,∴△C′MN≌△C′GN,∴MN=GN,在Rt△GCN中,∵GN2=CG2+CN2,CG=BM,MN=GN,∴MN2=BM2+CN2.4.(2016辽宁省大连市)阅读下面材料:小明遇到这样一个问题:如图1,△ABC中,AB=AC,点D在BC边上,∠DAB=∠ABD,BE⊥AD,垂足为E,求证:BC=2AE.小明经探究发现,过点A作AF⊥BC,垂足为F,得到∠AFB=∠BEA,从而可证△ABF≌△BAE(如图2),使问题得到解决.(1)根据阅读材料回答:△ABF与△BAE全等的条件是AAS(填“SSS”、“SAS”、“ASA”、“AAS”或“HL”中的一个)参考小明思考问题的方法,解答下列问题:(2)如图3,△ABC中,AB=AC,∠BAC=90°,D为BC的中点,E为DC的中点,点F在AC的延长线上,且∠CDF=∠EAC,若CF=2,求AB的长;(3)如图4,△ABC中,AB=AC,∠BAC=120°,点D、E分别在AB、AC边上,且AD=kDB(其中0<k<33),∠AED=∠BCD,求AEEC的值(用含【答案】(1)AAS;(2)4;(3)AEEC=3【分析】试题分析:(1)作AF⊥BC,根据已知条件易得∠AFB=∠BEA,∠DAB=∠ABD,AB=AB,根据AAS可判断出△ABF≌△BAE;(2)连接AD,作CG⊥AF,易得tan∠DAE=,再由tan∠F=tan∠DAE,求出CG,再证△DCG∽△ACE,根据相似三角形的性质即可求出AC;(3)过点D作DG⊥BC,设DG=a,在Rt△ABH,Rt△ADN,Rt△ABH中分别用a,k表示出AB=2a(k+1),BH=a(k+1),BC=2BH=2a(k+1),CG=a(2k+1),DN=ka,最后用△NDE∽△GDC,求出AE,EC即可.【解答】证明:(1)如图2,作AF⊥BC,∵BE⊥AD,∴∠AFB=∠BEA,在△ABF和△BAE中,,∴△ABF≌△BAE(AAS),∴BF=AE∵AB=AC,AF⊥BC,∴BF=BC,∴BC=2AE,故答案为AAS(2)如图3,连接AD,作CG⊥AF,在Rt△ABC中,AB=AC,点D是BC中点,∴AD=CD,∵点E是DC中点,∴DE=CD=AD,∴tan∠DAE==,∵AB=AC,∠BAC=90°,点D为BC中点,∴∠ADC=90°,∠ACB=∠DAC=45°,∴∠F+∠CDF=∠ACB=45°,∵∠CDF=∠EAC,∴∠F+∠EAC=45°,∵∠DAE+∠EAC=45°,∴∠F=∠DAE,∴tan∠F=tan∠DAE=,∴,∴CG=×2=1,∵∠ACG=90°,∠ACB=45°,∴∠DCG=45°,∵∠CDF=∠EAC,∴△DCG∽△ACE,∴,∵CD=AC,CE=CD=AC,∴,∴AC=4;∴AB=4;(3)如图4,过点D作DG⊥BC,设DG=a,在Rt△BGD中,∠B=30°,∴BD=2a,BG=a,∵AD=kDB,∴AD=2ka,AB=BD+AD=2a+2ka=2a(k+1),过点A作AH⊥BC,在Rt△ABH中,∠B=30°.∴BH=a(k+1),∵AB=AC,AH⊥BC,∴BC=2BH=2a(k+1),∴CG=BC﹣BG=a(2k+1),过D作DN⊥AC交CA延长线与N,∵∠BAC=120°,∴∠DAN=60°,∴∠ADN=30°,∴AN=ka,DN=ka,∵∠DGC=∠AND=90°,∠AED=∠BCD,∴△NDE∽△GDC.∴,∴,∴NE=3ak(2k+1),∴EC=AC﹣AE=AB﹣AE=2a(k+1)﹣2ak(3k+1)=2a(1﹣3k2),∴.5.我们把两条中线互相垂直的三角形称为“中垂三角形”.例如图1,图2,图3中,AF,BE是△ABC的中线,AF⊥BE,垂足为P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.特例探索(1)如图1,当∠ABE=45°,c=22时,a=,b=如图2,当∠ABE=30°,c=4时,a=,b=;归纳证明(2)请你观察(1)中的计算结果,猜想a2,b2,c2三者之间的关系,用等式表示出来,请利用图3证明你发现的关系式;拓展应用(3)如图4,在□ABCD中,点E,F,G分别是AD,BC,CD的中点,BE⊥EG,AD=25,AB=3.求AF【答案】(1)25,25;213,27;(2)a2+b2=5c2;(3【分析】(1)运用三角形中位线的性质和相似

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论